

GHOST RECON: ADVANCED WARFIGHTER

- SCRIPTING FOR BEGINNERS -

Patch v1.35

By: Erik “Wolfsong” Lindqvist
WolfsongMods@Hotmail.com

Document Contents
Chapter 1: Introduction and XML Basics..3

Intro..3
XML...3

Chapter 2: Base XML Elements in GR:AW..5
Area Conditions ...5
Triggers ..5
Events...6

Chapter 3: Human Activated Areas ...7
World.xml ..7
Area Condition...8
Area Condition Activation Event...9
Area Trigger...9
Enemy Activation Event ..10
Vehicle Area Conditions..11
Other Area Condition Syntax Versions ...11

Chapter 4: Objective UI ...12
Add Objective Event..13
Update Objective Event ...14
Complete Objective Event ...14
Separate Waypoint Control..15
String XML..15

Chapter 5: Trigger Conditions ...16
Trigger Condition Quick List...16
Trigger Condition Descriptions ...16
AND Conditions ..19
OR Conditions ...20
AND OR Condition ...21

Chapter 6: Event Element Types ...22
Start Time...22
Event Element Type Quick List...22
Event Element Type Descriptions ...24

Chapter 8: Demolition..44
Activate Prop ...44
Special Demolition Event ..45

Chapter 7: Timer ..46
Simple Timer ...46
Stoppable Timer...47

Chapter 8: Override Original SP/Coop Mission ..48
Folders..48
Files..49
Extra...51

Example 1: End Game If Serial Killer Before Entered Area...................................52
Breakdown ...52
Area Conditions ...52
Triggers ..53
Events...54
Outro ..54

Appendix 1: GR to GR:AW Trigger Translator ..55

Chapter 1: Introduction and XML Basics

Intro
To begin with you may wonder what you need to script for GR:AW. And the answer
is simply nothing more then the game itself and a text editor of your choice. Many
text editors have color syntaxes for different programming languages, but it’s not
essential to be able to script. NotePad works just as well as for example XML Marker,
which you can find for free here: http://symbolclick.com/download.htm

Now then, before we go into all the different triggers, events, elements and other stuff
that looks cryptic when you first try to script a mission for GR:AW, let’s take a look a
basic example of how a part of it works and also give a little introduction to XML.
We’ll only look into the mission.xml file for now.

Many things in mission.xml refer to entries found in world.xml, which is created by
the map editor. Those are the “game names” set to the objects, all other names you see
we give things in the mission.xml is only used internally by that file.

This document will not cover making the map itself or understanding the map editor.
Everything will require that you have already built the map and placed the only
required item, the player team group, which in this tutorial is named “friendly1”,
which is important to know when making conditions that are affected by the players.
Later I'll go into how you export missions from the map editor and run them in
GR:AW, as that is not part of the scripting itself.

XML
Ok then, what is XML? To quote www.xml.com, this is the technical term:

XML is a markup language for documents containing structured
information. Structured information contains both content (words,
pictures, etc.) and some indication of what role that content plays
(for example, content in a section heading has a different meaning
from content in a footnote, which means something different than
content in a figure caption or content in a database table, etc.).

Almost all documents have some structure. A markup language is a
mechanism to identify structures in a document. The XML specification
defines a standard way to add markup to documents. Unlike HTML, XML
specifies neither semantics nor a tag set. In fact XML is really a
meta-language for describing markup languages. In other words, XML
provides a facility to define tags and the structural relationships
between them. Since there's no predefined tag set, there can't be any
preconceived semantics. All of the semantics of an XML document will
either be defined by the applications that process them or by
stylesheets.

Okay, I guess that didn’t help very much. But I’ll try to at least give you the basics of
how XML, or Extensible Markup Language, is structured. Its syntax is very similar to
that of HTML, which is where XML originated. Like HTML, XML is built in
hierarchies of nested elements. The main difference is that in XML the people making
the engine, in our case GRIN, can create their own element tags, which means that
they can create their own elements to be used in the XML files we’ll be scripting in.

http://symbolclick.com/download.htm

An XML element typically consists of two tags, a start tag and an end tag, which can
surround other elements that are then called child elements. The start tag consists of a
name surrounded by angle brackets, like “<name>”. The end tag consists of the same
name with angle brackets, but with a forward slash preceding the name, like
“</name>”. To set this end tag is what programmers refer to as “closing your tags”.
The elements attributes are everything that appears in the start tag after the name, but
before the closing angle bracket. First comes the name of the attribute, followed by
the value it is given. The value must ALWAYS be quoted, and each attribute name
should only appear once in any element. The elements content is everything that
appears between the start tag and the end tag, which in GR:AW scripting is always in
the form of child elements.

An element without content has a special syntax to make it shorter to write. Instead of
writing a start tag followed immediately by an end tag, the forward slash is inserted at
the end of the start tag, before it’s closing angle bracket, like “<name/>”. If this
element has attributes, those are written as normal after the initial name.

Note: Everything in XML is also case sensitive. So if there is an element called “name”, you can’t call
it by writing “Name”.

The basic syntax for an XML element looks like this:
<name attribute1=”value1”> <content attribute1=”value1”/></name>

Above you can see an element called “name”. It has an attribute called “attribute1”,
which is given the value “value1”. This element also has content in form of a child
element which has no content of its own and therefore is written with the special
syntax provided for that case. As you can see, the child element is tabbed in as to
easier get an overview of the code hierarchy. The child element is called “content”
and also has an attribute called “attribute1” given the value “value1”. Finally there is
an end tag for the “name” element, telling the script that it has no more content.

Note: The two attributes with the same name has NO connection between them at all. Attributes are
specific to each element they are given to, and which attributes that can be given to an element is
defined by the creators of the engine that will read you script.

That is it for the basics in XML, which I hope will help you understand the rest of this
document better.

Chapter 2: Base XML Elements in GR:AW

There are a few basic elements that GRIN has created for GR:AW to build the main
structure in the mission.xml. To begin with there are only three different base
elements you’ll be using, “area_group”, “user” and “event”.

Area Conditions
 “area_group” is the base element used to define an area condition. This is used to
check if a specific number of members for a specified group, or a vehicle, are inside
the specified area. This element type never has any contents, but it has a lot of
attributes that has to be used to setup the condition requirements. Some of them are
optional depending on if it’s a vehicle or human trigger, but we’ll get into that in the
next chapter.

An example of the “area_group” element:
<area_group name=”” area_name=”” group_id=”” interval=””
condition=””/>

Triggers
“user” is the base element used to create triggers that check if all their given
conditions are “true” and if a defined event. They always have contents which mainly
consists of an element type called “trigger”, which actually only is a condition.
There can be an unlimited amount of “trigger” elements inside a “user” trigger, but
all of them have to be checked as true for the trigger to successfully run. These
triggers have to be given a value for their “type” attribute, and depending on which
type of trigger it is there will be other attributes that needs to be set, which is covered
in chapter 5. The last line of content inside a “user” is always an element called
“event”, which has an attribute called “name” that hold the name of the event to run if
all the conditions above are true.

The “user” element itself also has attributes. The first is “name”, which is required.
This name isn’t used for anything at all besides being good for you as the scripter to
remember what the trigger is for. There is also an optional attribute called “type”,
which you only need to use if you want to make sure that the trigger is only
successfully run once during a mission. If that is required, you give that attribute the
value “once”. If you don’t use the attribute, a default value is given to it which tells
the game that the trigger can run unlimited times during the mission. At the end, don’t
forget to close your tags.

An example of the “user” element:
<user name=”” type=””>
 <trigger type=””/>
 <event name=””/>
</user>

Events
“event” is the base element used to create the events which actually drive the mission
forward. They don’t have to have contents, but without it nothing will happen and the
event isn’t needed in the script. So we can say that they in general always have
contents anyhow. The “event” element also has an attribute called “name”, which is
very important. This name is only used inside mission.xml, but it’s what you will use
to execute or stop that event when the script is running. Always use a name that
describes what the purpose of the event is to make it easier on yourself. There is also
an optional attribute, just like on the “user” element, which also has the same
function but here it’s called “once” and has to be set to “true” for the event to only
run once during a mission. And it also will default to making the event run unlimited
times if this attribute isn’t used.

The event content only consists of one element type, simply called “element”. It
sounds simple, but it can be set to a lot of different type by setting its first attribute
“type”. All of these types and all their special attributes and are covered in chapter 6,
but for now it’s good to know that most of them at least have no contents of their
own. It’s always a good thing to list the elements in the order you want them to
execute, so that it’s easier to read the script, although it’s not needed as executing
order is set by an attribute that all event content elements have, called “start_time”.
This attribute is usually declared last of the attributes for each element and set in
seconds delay that this specific element should have in executing after the event itself
has been called. I’ll show this in examples in later chapters. And then again at the end,
don’t forget to close your tags.

An example of the “event” element:
<event name=”” once=”true”>
 <element type=”” start_time=””/>
 <element type=”” start_time=””/>
</event>

Very important to know about before starting to script a mission is the special
“event” named “start_game”. You have to have this event and it’s executed
automatically when the mission starts. Here you have to make sure that your script
execution chain is started if needed, which depends on what triggers are used at the
beginning of the mission. You also have to setup so that the insertion starts, and that
the inventory screen is shown if you want the player to be able to select weapons and
not only use the standard kits.

With knowledge about the base elements used in GR:AW mission.xml, we’ll move on
with a simple scripting example next.

Chapter 3: Human Activated Areas

With the basics covered, let’s finally get into some scripting. I think we should begin
by looking at something that you’ll use quite often in missions, area conditions. They
are a fairly simple setup and very complicated to use, so a good place to start. I’ll try
to add a much descriptive text as I can in this chapter as it’s our first look at actual
mission scripting in GR:AW.

Our goal in this chapter is to create an area that will act as a trigger condition which
checks if a member of the player team is inside it, and if so returns the value true.
Then if it checks as true, we want the script to call an event that will execute and
activate a hostile group which will attack the player, a quite simple and common setup
to see in a mission script.

Here is the script that we’ll need:
<area_group name=”enemy_area01” area_name=”enemy_area01”
group_id="friendly1" interval=”0.3” condition=”1”/>

<event name=”start_game”>
 <element type=”UnitInArea” area=”enemy_area01” state=”activate”/>
</event>

<user name=”enemy_area01_trigger” type=”once”>
 <trigger type=”UnitInArea” area=”enemy_area01”/>
 <event name=”show_enemy_group01”/>
</user>

<event name=”show_enemy_group01”>
 <element type=”UnitInArea” area=”enemy_area01” state=”deactivate”/>
 <element type=”ActivateGroup” group_id=”enemy_group01”/>
</event>

At first you may think it looks complicated, but I’ll explain it all step by step and
gradually let you do more and more of the thinking as the chapters goes.

World.xml
For this script to work we’ll first need to place a few objects in the map editor, which
then will be saved into the world.xml. Those things are an area, which I named
“enemy_area01” in the map editor, and a human group of any hostile kind you want
to use, which I named “enemy_group01”. Save it and world.xml will be updated.

Area Condition
Next we’ll need to do some scripting in mission.xml. Let’s begin with defining the
area condition so that it knows what group to look for, how many members that has to
be inside for it to return that the condition is true, and also how often it should do this
check after it has been activated. We’ll later use this as a condition content in a trigger
element, as described in chapter 2.

That part of the script looks like this:
<area_group name=”enemy_area01” area_name=”enemy_area01”
 group_id="friendly1" interval=”0.3” condition=”1”/>

First we have the element type used for defining area conditions as described in
chapter 2, called “area_group”.

Next is the required attribute, “name”, where you give the name used to refer to this
area condition inside mission.xml. Use something descriptive so you remember what
the condition for a check to be true, is.

Then the next required attribute is “area_name”. This is where you enter the name of
the area you want to use, which is the one you placed in the map editor so enter the
name you gave it in there, which is now in the world.xml.

Tip: You can use the same area in unlimited amounts of area conditions, all looking for different
groups, vehicles or amounts.

Tip 2: If I only use the area on the map for one condition, I use the same name for the condition as I
gave the area in the map editor, to make it simpler to remember.

Then, as we want a human group to be detected in this condition, we need a
“group_id”. Enter the name of the player team group, as we want it to check for the
player presence, which I told you in chapter 1 that I set to “friendly1”.

We are also required to set an “interval” for how often the check should be made,
when the area condition is activated (which we’ll cover later). This is set in seconds,
and let’s says that it’s an important check, so let’s set it to “0.3”.

Note: The interval value depends on the size off the area and how important it is that the area detects
the player as soon as possible when he/she enters. If the area is small and the interval is large, the
player may pass through the area before the check is run, and then it won’t detect the player’s
presence.

At last it requires the “condition” amount, which depends on how we want to use
the area condition. We can set it to “1” if we require one member of the set group to
be in the area for it to return true when checked. We can set it to “all” if we require
the entire group to be inside for it to return true when checked. Another way we could
use an area condition is to require that no member of the group is inside to return true
when checked, and then we would set it to “0”.

Note: Don’t set it to a bigger integer than the group has members or it won’t be able to ever return
true when checked, which then makes the trigger using the condition unable to ever run successfully.

Area Condition Activation Event
For an area condition to start checking its requirements it has to be activated. When
it’s not activated it will always return “false” if checked inside a trigger. There is a
specific “element” type, which can only activate and deactivate area conditions, but
as we learned in chapter 2, “element” only work inside an “event”. Which event to
use depends on when during the mission that the area should be activated? In this
example, let’s say that the area is close to when the player is inserted at the beginning
of the mission and therefore activate it inside the special event named “start_game”,
which was covered at the end of chapter 2.

Note: The element can be used inside any event in this mission.xml.

That part of the script looks like this:
<event name=”start_game”>
 <element type=”UnitInArea” area=”enemy_area01” state=”activate”/>
</event>

First add a child element of the type “element” inside the event tags. The “type” of
element we need now is called “UnitInArea” which activates or deactivates area
conditions. Setting that attribute value will make another series of required attributes
available that only works with UnitInArea.

The first of these are “area”, where we must enter the name we gave to our area
condition when we defined it.

Then we’ll need to set the “state”, which is simply what we want the game to do
with the given condition area, either “activate” or “deactivate”. As we want to be
able to detect if the area condition is true we must set this to “activate”.

Area Trigger
Now that we have set it up so the area condition is activated, we need to script the part
where that condition should be used, or the player being inside the area will be
detected by the game, but it won’t lead to anything else happening.

That part of the script looks like this:
<user name=”enemy_area01_trigger” type=”once”>
 <trigger type=”UnitInArea” area=”enemy_area01”/>
 <event name=”show_enemy_group01”/>
</user>

First we have to create a trigger base element, which we defined in chapter 2 that it’s
called “user”. Then we have to set its “name” attribute, which is only for us to be
able to remember what it does, so let’s use the area condition name followed by the
word trigger. As we only want this trigger to execute the script given once, let’s use
the optional attribute “type” and set it to “once”.

Next we need to enter the condition we want the trigger to use when deciding if the
given event should be called to execute. As seen in chapter 2, we need to use an
element called “trigger”. We’ll set its “type” attribute to “UnitInArea”, as we want
to use our defined area condition. This specific type has a required attribute called
“area”, which we have to set to the name we gave the area condition when we
defined it.

After that we need to tell the trigger which event to call if the above condition is
checked to be true. For this we use an element called “event” (which is NOT the
same “event” we use as a base element). It has only one required attribute called
“name”, which we give the name of the event to call if the triggers conditions are true.
Let’s call this “show_enemy_group01” which describes what it will do, and we’ll
create that next.

Then don’t forget to close your tags.

Enemy Activation Event
The last thing we need for the script to work is the event which is called when the
player is detected inside our area. It’s a normal base “event”, which will never
execute if no trigger or other event tells it to do so.

That part of the script looks like this:
<event name=”show_enemy_group01”>
 <element type=”UnitInArea” area=”enemy_area01” state=”deactivate”/>
 <element type=”ActivateGroup” group_id=”enemy_group01”/>
</event>

First we create the “event” and set its “name” attribute. Set it to the same name as
used for the trigger to call if it’s condition where true, “show_enemy_group01”.

Next we’ll add an “element” and set its “type” to “UnitInArea”. Why would we
need this here? As we set the trigger to only be used successfully once, the only
reason is to save processor power. We have to deactivate the area condition or it will
continue to do its check with the given interval until the mission is ended, which
won’t be of any use as the only condition that uses it has been executed successfully
and removed, so it’s only a waste of resources. Once again then, we set the “area”
attribute to the name of the defined area condition, but this time we’ll set the “state”
to “deactivate” so that it won’t be used anymore.

After that we’ll add the “element” that is going to perform the action we where
looking for, so set its “type” attribute to “ActivateGroup”. This element type can
only do one thing, show groups it can find in world.xml to the game world and tell
that group to start its behaviour set in the map editor. For this it requires that we set its
“group_id” attribute to the name of the group we want to show, which is the same as
the name we gave the group when we created it in the map editor.

Then close the “event” tag and where done. We have now created a script that will
detect is a member of the player team is inside a given area and if so, activate an
enemy group.

Vehicle Area Conditions
If you want to create an area condition that checks for a vehicle instead of a human,
it’s just as easy but with one different attribute.

Human version:
<area_group name=”enemy_area01” area_name=”enemy_area01”
 group_id="friendly1" interval=”0.3” condition=”1”/>

Vehicle version:
<area_group name=”tank_area” area_name=”tank_area”
 vehicle_id=”tank_01” interval=”0.5” condition=”1”/>

As you can see the only difference is the use of the attribute “vehicle_id” instead of
the attribute “group_id”. Great, now we know how to set those up as well.

Other Area Condition Syntax Versions
There are attributes that has default values, which you can see in the original missions
by GRIN where some attributes haven’t been set in the definition. But I suggest that
you always set the attributes shows in this chapter so that you always know exactly
what it does. Default values are good but they don’t give you the same overview when
you’ve put something aside for a while and pick it back up.

You may also see that GRIN sometimes uses the attribute “group” instead of
“group_id”, which they then set to “player” for the player team. This works fine but
can only be used with predefined groups, while the version described in this chapter is
a general way of doing it and works on any group you create in the map editor.

That script would look like this, instead of the one used in this chapter:
<area_group name=”act_mc_dp” area_name=”act_mc_dp” group=”players”
 interval=”0.3” condition=”all”/>

In the end it’s all up to you how you want to solve things in your script. Find the ways
the suit your scripting style and go with it.

Next we’ll take a look at using objectives before we get in deep with all the condition
and element types available in GR:AW.

Chapter 4: Objective UI

Ok. Now you should know a little more about how the syntax works, so I won’t
describe everything at the same level as in the previous chapter but will of course
explain anything new and the function of the script itself.

Our goal in this chapter is to create an objective with headline, descriptive text and a
waypoint marker in the HUD. We want to update the objective during the mission and
finally declare the objective completed. Important to understand is that nothing that
we create in this chapter will have anything to do with what the actual objective is, in
other words, what activates it, what is required to update it, or what is required to
complete it. Nor will the script in this chapter work by itself. All we are going to do is
create the parts that the player can see during the mission, the HUD and map
elements. For the objective to actually do anything and drive the mission forward,
you’ll need to use triggers and other events based on you mission design. All
available trigger conditions will be covered in detail in chapter 5.

We really wouldn’t need to enclose each of the elements covered in this chapter inside
their own events, but we’ll do that anyhow to show that they are used in different
parts of the script. In your mission you can, and probably will, use them inside any
event you want, combined with other elements.

Here is the script that we’ll need to reach the goal of this chapter:
<event name=”add_objective1”>
 <element type=”Objective” id=”obj1” state=”add”
 headline_id=”mx_obj1_head” txt_id=”mx_obj1_txt”
 waypoint_id=”mx_obj1_wp” waypoint=”10171 -9296 106”/>
</event>

<event name=”update_objective1”>
 <element type=”Objective” id=”obj1” state=”add”
 headline_id=”mx_obj1_head” txt_id=”mx_obj1_txt2”
 waypoint_id=”mx_obj1_wp” waypoint=”10171 -9296 106”/>
</event>

<event name=”complete_objective1”>
 <element type=”Objective” id=”obj1” state=”remove”/>
</event>

To do this we need nothing from the world.xml. But we need to have the coordinates
to where we want the waypoint marker to appear. One way of getting this is to use the
panel inside the map editor, activated by pressing F12, and moving your camera to
around the area where you want it to be places and then writing down the coordinates
seen in the lower right corner. Another way is to place a prop where you want it to be,
name it something like “objective_marker”, save your file and them open the
world.xml in you XML editor and do a search for “objective_marker”. Then you’ll
find its coordinates listed next to it’s entry in there, copy them to somewhere safe and
then in back in the map editor, delete the prop. There maybe other ways, but that it
how I’ve been doing it.

Add Objective Event
The first thing we need is an event that adds the objective for the player to see.

That part of the script looks like this:
<event name=”add_objective1”>
 <element type=”Objective” id=”obj1” state=”add”
 headline_id=”mx_obj1_head” txt_id=”mx_obj1_txt”
 waypoint_id=”mx_obj1_wp” waypoint=”10171 -9296 106”/>
</event>

We create a simple event and give it a name that is descriptive so we can easily find it
in our script. This you know by now so let’s concentrate on the content element.

We only need one element to initiate an objective for the player, it is of the type
“objective”. This element type has many attributes that are optional to use,
depending on what you want to do with the objective.

First we’ll set the only attribute that “objective” always requires, which is “id”.
This is the name that we’ll use in the script to add, update and remove the objective.
Next we’ll set the other required attribute “state”. As we want to add it as a new
objective, set it to “add”.

Tip: I usually put “state” as the third attribute so that it’s easy to see what we’re doing with the
selected objective. In the original missions this is usually one of the last attributes in the line.

Then we want to tell the game which strings to use as objective headline and objective
description. This is done by setting the attributes “headline_id” and “txt_id”,
which require you to enter the name of string variable created in the string.xml
connected with your mission, which you don’t have to use as of patch 1.35. Since
patch v1.35 there is another option to enter headline and description to an objective,
that doesn’t require a string.xml file. Instead of using “headline_id” you simply use
the new attribute “headline” and enter the text you want inside the quotation marks.
The same thing can be done for the description, when “txt” is used instead of
“txt_id”.

That was it for the objective part. Now we need to set the attributes for the waypoint
marker. The first of those is “waypoint_id”, which works the same as the other string
attributes, but holds the string that will be visible under the waypoint in the HUD.
This attribute also accepts text written directly between the quotation marks, if that
text isn’t matching the name of a string variable in the string.xml. The second
attribute needed is “waypoint”, which requires the coordinates of where the waypoint
should appear in the game world that we got earlier somehow. These are entered as
three floats in the order x, y and z. Now all that is left is closing all tags.

Update Objective Event
Now the player can see the objective in the list, read the description and see the
waypoint on the map and in the HUD. But during this objective the description will
change when a given trigger condition is set.

That part of the script looks like this:
<event name=”update_objective1”>
 <element type=”Objective” id=”obj1” state=”add”
 headline_id=”mx_obj1_head” txt_id=”mx_obj1_txt2”
 waypoint_id=”mx_obj1_wp” waypoint=”10171 -9296 106”/>
</event>

Create a new event and give it a good name. We’ll only need one element as contents
again, and once again we’ll set the “type” to “objective”. As we want to update the
objective we added earlier, we’ll have to set “id” the same as we did before. Then
we’ll set “state” to “add”. Now you may wonder why we did that, when I said
before that we where going to update the existing objective. The reason is that it is
programmed so that if the game detects that the given id already has been defined, it
will update that automatically, if it’s not defined it will define it. So far everything is
exactly the same as when we first created the objective. Next we’ll use the
“headline_id” and “txt_id” again. As we don’t want to change the objective
headline, we’ll set the same string for that as before, but we want to change the
description, and so we simply set another value to the “txt_id”.

As we don’t want to change the objective waypoint, we’ll set all those value the same
again, and finish checking that all tags are closed.

Complete Objective Event
Finally we want to create the event that declares the objective completed in the list
and removes the waypoint.

That part of the script looks like this:
<event name=”complete_objective1”>
 <element type=”Objective” id=”obj1” state=”remove”/>
</event>

Create yet another new event and give it a good name. Once again we’ll only need
one element as content with the “type” set to “objective”. Then again tell the game
which objective you want to manipulate by setting “id” to the name we gave it when
defining it. And now to remove the objective and the waypoint, we’ll set “state” to
“remove”. The reason both the objective was set as complete and the waypoint was
removed is that they have the same “id”. I’ll show later how to do this with separate
waypoint controls. But first, close all tags, and we’re done with the goal for this
chapter.

Separate Waypoint Control
For some objectives you’ll probably want more then one waypoint marker and/or
have separate control over it in the script. To get the later you’ll need to have a
separate id for just the waypoint marker. This is done by defining the objective and
the waypoint in separate elements.

Objective and waypoint with a single id:
<event name=”add_objective1”>
 <element type=”Objective” id=”obj1” state=”add”
 headline_id=”mx_obj1_head” txt_id=”mx_obj1_txt”
 waypoint_id=”mx_obj1_wp” waypoint=”10171 -9296 106”/>
</event>

Objective and waypoint with separate ids:
<event name=”add_objective1”>
 <element type=”Objective” id=”obj1” state=”add”
 headline_id=”mx_obj1_head” txt_id=”mx_obj1_txt” />
 <element type=”Objective” id=”obj1_wp” state=”add”
 waypoint_id=”mx_obj1_wp” waypoint=”10171 -9296 106”/>
</event>

If you want to add multiple waypoints for an objective, you simply do it by adding an
additional element for each additional waypoint.

Objective with multiple waypoints:
<event name=”add_objective1”>
 <element type=”Objective” id=”obj1” state=”add”
 headline_id=”mx_obj1_head” txt_id=”mx_obj1_txt” />
 <element type=”Objective” id=”obj1_wp1” state=”add”
 waypoint_id=”mx_obj1_wp” waypoint=”10171 -9296 106”/>
 <element type=”Objective” id=”obj1_wp2” state=”add”
 waypoint_id=”mx_obj1_wp” waypoint=”10500 -8256 -90”/>
</event>

When you define everything with separate ids, you also have to remember to remove
them all at the end with separate elements.

String XML
The string.xml file is something that all original missions use to define strings
containing the text to be shown during the mission, including the briefing while
loading in SP. These files are found in the data/strings catalogue.

Inside it uses very simple XML, with one base element containing all string variable
elements.

<stringset>
 <string id="mx_obj1_head" value="Search and destroy ADA unit"/>
 <string id="mx_obj1_txt" value="Place c¤ explosives in ADA unit."/>
 <string id="mx_obj1_wp" value="ADA location"/>
</stringset>

Chapter 5: Trigger Conditions

Now that we are getting the hang of the syntax, we need more trigger conditions to be
able to set up different situations in our mission flow.

This chapter will only cover what trigger conditions are available and what attributes
they require. The basic syntax for triggers was covered in chapter 2, and won’t be
repeated here.

Trigger Condition Quick List
EnemyGroup Killed member of group condition.
HeliCleared Group exited helicopter condition.
TeamInTransport Group entered vehicle condition.
TeamMemberJoined New member in group condition.
TransportCleared Group exited ground vehicle condition.
UnitDestroyed Destroyed prop or static condition.
UnitInArea Group or vehicle in area condition.
Vehicle Destroyed vehicle condition.

Trigger Condition Descriptions

EnemyGroup Condition
This condition type is used to check is members of a group, or an entire group, has
been killed. It has its own child element, called “enemy”, in which you’ll define what
group this condition concerns and the number of its members that has to have been
killed for the condition to return the value true.

<trigger type=”EnemyGroup” name=”team_a_condition”>
 <enemy group_id=”team_a” condition=”4”/>
</trigger>

type EnemyGroup
name Name of this condition (never used anywhere else).
group_id Name of group to check for casualties.
condition Number of casualties required, set to “all” for entire group.

HeliCleared Condition
This condition is used to check if all members of a group have left a specified
helicopter.

<trigger type=”HeliCleared” vehicle_id=”hawk01” group_id=”team_a”/>

type HeliCleared
vehicle_id Name of vehicle to check inside.
group_id Name of group to check against.

TeamInTransport Condition
This condition is used to check if all members of a group have entered a specific
vehicle, like an extraction helicopter or Stryker.

<trigger type=”TeamInTransport” vehicle_id=”hawk01”
 group_id=”team_a”/>

type TeamInTransport
vehicle_id Name of vehicle to check inside.
group_id Name of group to check against.

TeamMemberJoined Condition
This condition is probably made especially for the first mission in the original
campaign. Although I would guess that it works with any group as you define which
group to check the size of.

<trigger type=”TeamMemberJoined” group_id=”team_a” condition=”4”/>

type TeamMemberJoined
group_id Name of group to check new number of members in.
condition New amount of members required.

TransportCleared Condition
This condition is used to check if all members of a group have left a specific ground
vehicle.

<trigger type=”TransportCleared” vehicle_id=”apc01”
 group_id=”team_a”/>

type TransportCleared
vehicle_id Name of ground vehicle to check inside.
group_id Name of group to check against.

UnitDestroyed Condition
This condition is used to check if a prop or static has been destroyed.

<trigger type=”UnitDestroyed” id=”main_prop”/>

type UnitDestroyed
id Name of prop or static to check if destroyed.

UnitInArea Condition
This condition is used to check if a set amount of members from a set group is inside
a defined area. It is used with an area condition, which was covered in chapter 2.

<trigger type=”UnitInArea” area=”area_01”/>

type UnitInArea
area Name of predefined area condition to check.

Vehicle
This condition is used to check if a vehicle has been destroyed. It has its own child
element, called “vehicle”, in which you’ll define what vehicle to check against.

<trigger type=”Vehicle”>
 <vehicle id=”vehicle01”/>
</trigger>

type Vehicle
id Name of vehicle to check if destroyed.

AND Conditions
Many times you’ll want to make triggers that require more then one condition. AND
conditions are done a little different depending on which conditions you want to use,
as some has their own content, but it’s basically just to line them up one after the
other. Any number of conditions can be listed after each other as content of the
“user” tag, and they will all be required to be true before the “event” tag at the end
till run.

For example if we want to have conditions for “main_prop” to have been destroyed
AND area conditions “area_01” AND “area_02” to be true AND a group “a1” to be
inside their transport “apc01” for an event to run, it would look like this:

<!--Condition 1, 2, 3 AND 4-->
<user name=”stryker_leave_trigger” type=”once”>
 <trigger type=”UnitDestroyed” id=”main_prop”/>
 <trigger type=”UnitInArea” area=”area_01”/>
 <trigger type=”UnitInArea” area=”area_02”/>
 <trigger type=”TeamInTransport” vehicle_id=”apc01” group_id=”a1”/>
 <event name=”stryker_leave”/>
</user>

When conditions that have their own contents are used, any number of child elements
can be used in each of those.

For example if we want both tank “tank_1” AND “tank_2” to be destroyed AND
groups “team_a” AND “team_b” AND “team_c” to have lost at least two members
each AND area condition “area_01” to be true for an event to run, it would look like
this:

<!--Condition 1, 2, 3, 4, 5 AND 6-->
<user name=”enemy_runaway_trigger” type=”once”>
 <trigger type=”UnitInArea” area=”area_01”/>
 <trigger type=”Vehicle”>
 <vehicle id=”tank_1”/>
 <vehicle id=”tabk_2”/>
 </trigger>
 <trigger type=”EnemyGroup” name=”three_team_condition”>
 <enemy group_id=”team_a” condition=”2”/>
 <enemy group_id=”team_b” condition=”2”/>
 <enemy group_id=”team_c” condition=”2”/>
 </trigger>
 <event name=”enemy_runaway”/>
</user>

OR Conditions
Creating OR conditions require much more code, but it’s still quite simple to do. All
you need is one trigger for each OR condition and set the event they all will trigger to
run only once.

For example if you want “tank01" OR "tank02" to be destroyed OR have group "vip"
in "hawk1" as a trigger condition for an event to run, it would look like this:

<!--Condition 1-->
<user name=”tank1_gone” type=”once”>
 <trigger type=”Vehicle”>
 <vehicle id=”tank01”/>
 </trigger>
 <event name=”go_wave2”/>
</user>

<!--OR Condition 2-->
<user name=”tank2_gone” type=”once”>
 <trigger type=”Vehicle”>
 <vehicle id=”tank02”/>
 </trigger>
 <event name=”go_wave2”/>
</user>

<!--OR Condition 3-->
<user name=”vip_out” type=”once”>
 <trigger type=”TeamInTransport” vehicle_id=”hawk1” group_id=”vip”/>
<event name=”go_wave2”/>
</user>

<!--Event To Run-->
<event name=”go_wave2” once=”true”>
 <element type=”.....”/>
 <element type=”.....”/>
</event>

The important part, as I wrote above, is to set the event to only run once, by setting
the attribute once=”true”. When the first condition is triggered it will run the event.
The other two will still trigger when they occur, but as the event can only run once,
nothing else will happen.

AND OR Condition
Of course you have already understood how to combine the two version above to
create an AND OR condition, but I'll show an example on this anyhow.

For example if you want "tank01" to be destroyed AND have "vip" in "hawk1" to
trigger the event to run, OR you want "tank02" to be destroyed to trigger the event to
run, it would look like this:

<!--Condition 1 AND 2-->
<user name=”tank1_gone_and_vip_out” type=”once”>
 <trigger type=”Vehicle”>
 <vehicle id=”tank01”/>
 </trigger>
 <trigger type=”TeamInTransport” vehicle_id=”hawk1” group_id=”vip”/>
 <event name=”go_wave2”/>
</user>

<!--OR Condition 2-->
<user name=”tank2_gone” type=”once”>
 <trigger type=”Vehicle”>
 <vehicle id=”tank02”/>
 </trigger>
 <event name=”go_wave2”/>
</user>

<!--Event To Run-->
<event name=”go_wave2” once=”true”>
 <element type=”.....”/>
 <element type=”.....”/>
</event>

That wasn’t too hard. Next we’ll take a look at the long list of event elements
available in GR:AW.

Chapter 6: Event Element Types

Now that we can create all types of trigger conditions the game engine offers, we need
to know what elements we can use in the events that get triggered. This

This chapter will only cover what event elements are available and what attributes
required and optional attributes they have. The basic syntax for events was covered in
chapter 2, and won’t be repeated here.

Start Time
All elements have an optional attribute called “start_time”. It can be set to decide
the delay in running each child element after their event is executed. It is set in
seconds, and if the attribute is not used it will default to “0.0”. This attribute will not
be listed on each element type as it would be very redundant.

It is usually a good idea to divide the elements in an event by giving them different
“start_time”, so that they all won’t run at the same time, which can cause the game
to temporarily freeze.

Event Element Type Quick List
ActivateCypher Show Cypher and turn over to player control.
ActivateEventIfVar May trigger event depending on variable value.
ActivateGroup Show group and start set behaviour.
ActivateRandomGroup Randomly show 1 of up to 4 groups.
ActivateVehicle Show vehicle.
Actor Run NarCom sequence.
AnimateUnit Run special animations inside unit.
Backdrop Show or hide map backdrop.
BreakEvent Stop another event from completing its execution.
ChangeMission End mission in success and setup next mission in campaign.
Composition Run composition.
DebugString Show debugging text.
DisableUnit Hides and deactivates unit, like C4 demolition props.
EnableHud Turn on player HUD (mission specific)
EnableHuman Show human carried by player (mission specific).
EnableUnit Shows and activates unit, like C4 demolition props.
ExplodeVehicle Destroy selected vehicle.
GiveAmmo Resupply ammo to player.
GroupJoinTeam Have group join player team (mission specific).
MissionCommand Activate or deactivate a mission command area.
Music Select music and play.

Objective Manipulate objective and waypoint GUI
OgrEnableExtraction Turn on or off extraction zone in OGR Coop.
OgrSetGameOver End OGR Coop game in failure.
OrderCar Give order to cars.
OrderHeli Give order to helicopters.
OrderTank Give order to tanks.
Outro End mission and run outro sequence (campaign specific).
RemoveGroup Hide group, conditions see them as killed.
RemoveVehicle Hide vehicle, conditions see them and their crew as killed.
SaveGame Save current game status in SP.
ScrambleHud Add interference to HUD.
SetAiGetUp Tell passive AI to get up and draw weapon.
SetCanTakeOrders Tell vehicle to take orders from player.
SetHeliCloseDoors Tell helicopter to close doors.
SetHeliDrop Tell game to allow player to fast-rope.
SetHeliDropRope Tell helicopter to drop fast-ropes.
SetHeliStand Tell game to show exit message when on ground.
SetIndestructable Make dynamic prop indestructible.
SetMusicMood Adjust music settings.
SetPlayerControlled Toggle player control over a group.
SetSlot Change slot for unit.
SetToSupply Give supply capability to a vehicle.
SetTransportType Enable vehicle to insert or extract teams.
SetVipTarget Make group a target of interest for Cypher.
ShowInverntory Show inventory selection menu.
ShowMessage Display message to all players.
SimulateDriving Simulate that the Stryker is moving while player inside.
SupportDone Tell vehicle that support role is over.
TriggerEvent Call another event to execute.
TriggerRandomEvent Randomly trigger 1 of up to 4 events.
UnitInArea Activate or deactivate an area condition.
UnitSequence Run animated sequence imbedded in unit.
UnitVisibility Hide or show prop.
UseVar Manipulate mission variables.

Other event elements found in game but never used in the original missions:
SetGlobal
SetPostEffect

Event Element Type Descriptions

ActivateCypher Element
This element is used to show a Cypher and turn it over to player control.

<element type=”ActivateCypher” vehicle_id=”cypher”/>

Type ActivateCypher
vehicle_id Name of Cypher to activate.

ActivateEventIfVar Element
This element is used to call and event if a given variable has a desired value.

<element type=”ActivateEventIfVar” id=”var_a” greater_than=”6”
 event=”event_a”/>

<element type=”ActivateEventIfVar” id=”var_b” equals_var=”var_a”
 event=”event_b”/>

type ActivateEventIfVar
id Name of variable to check against.
event Name of event to call if variable condition is good.

Requires the use of one of these optional attributes:
equals Run event if “id” value is equal to set value.
less_than Run event if “id” value is less than set value.
greater_than Run event if “id” value is greater than set value.
equals_var Run event if “id” value is equal to given variable value
less_than_var Run event if “id” value is less than given variable value.
greater_than_var Run event if “id” value is greater then given variable value.

ActivateGroup Element
This element is used to show a group and start its set behaviour.

<element type=”ActivateGroup” group_id=”guards01”/>

type ActivateGroup
event Name of group to show.

ActivateRandomGroup Element
This element is used to add replay ability to the missions, as it randomly activates a
group from a given list depending on a random value compared to a given chance list.

You only need to use one group attribute and one chance attribute for this element to
work. The values given to the chance attributes are the upper limit for its connected
group to get activated, RPG players will recognize this as a D100 list.

For example if “chance1” is set to “40”, “chance2” is set to “55”, “chance3” is set to
“74” and “chance4” is set to “90”, then:
”group1” will get activated if the random number is 0 or up to 40,
”group2” will get activated if the random number is greater then 40 and up to 55,
”group3” will get activated if the random number is greater then 55 and up to 74,
”group4” will get activated if the random number is greater then 74 and up to 90,
and no group at all will get activated if the random number is greater then 90.

<element type=”ActivateRandomGroup” group1=”enemy12 chance1=”25”
 group2=”enemy2” chance2=”50” group3=”enemy3” chance3=”75”
 group4=”enemy4” chance4=”100”/>

<element type=”ActivateRandomGroup” group1=”enemy1” chance1=”33”
 group2=”enemy2” chance2=”66” group3=”enemy3” chance3=”100”/>

<element type=”ActivateRandomGroup” group1=”enemy1” chance1=”50”
 group2=”enemy2” chance2=”100”/>

<element type=”ActivateRandomGroup” group1=”enemy1” chance1=”50”/>

type ActivateRandomGroup
group1 Name of first group that could get show.
chance1 Number between 1 and 100, percent chance for “group1”.

Optional attributes, but each group* requires you to use its chance* counterpart:
group2 Name of second group that could get show.
group3 Name of third group that could get show.
group4 Name of forth group that could get show.
chance2 Number between chance1 and 100, chance for “group2”.
chance3 Number between chance2 and 100, chance for “group3”.
chance4 Number between chance3 and 100, chance for “group4”.

ActivateVehicle Element
This element is used to show a vehicle, if set to use “sequence spawn” in map editor.

<element type=”ActivateVehicle” vehicle_id=”apc01”/>

type ActivateVehicle
vehicle_id Name of vehicle to show.

Actor Element
This element is used to run NacCom sequences.

<element type=”Actor” actor=”m02_briefing”/>

type Actor
actor Name of NarCom sequence to show.

AnimateUnit Element
This element is used to run animations exported inside units.

<element type=”AnimateUnit” name_id=”depot01”
 animation_group=”hangar_door” play_to=”length” speed=”1.5”/>

<element type=”AnimateUnit” name_id=”depot01”
 animation_group=”hangar_door” play_to=”0” speed=”-1”/>

type AnimateUnit
name_id Name of unit containing animation.
animation_group Name of contained animation to run.
play_to Now long to play animation, “length” is end, “0” is start.
speed How fast and which direction to play, negative is backward.

Backdrop Element
This element is used to hide or show the backdrop surrounding the map.

<element type=”Backdrop” action=”hide”/>

<element type=”Backdrop” action=”show”/>

type Backdrop
action Action to take with backdrop, “show” or “hide”.

BreakEvent Element
This element is used to break the execution of an event that is currently being
executed.

<element type=”BreakEvent” event=”go_wave2”/>

type BreakEvent
event Name of event to break execution of.

ChangeMission Element
This element is used in SP to declare a mission successfully completed and set the
path for the next mission in the campaign.

<element type=”ChangeMission” path=”/map/m03/m03” level_number=”2”/>

type ChangeMission
path Path to next mission in campaign.
level_number Order number of next mission in campaign.

Composition Element
This element is used to run compositions.

There are two main types of compositions, those that are defined by a
composition_testbox in the map editor (found in world.xml) and those that don't have
a set location and are run directly from the composition_manager.xml.

Only compositions that loop need to be deactivated.

<element type=”Composition” vehicle_id=”heli01” composition=”aa”/>

<element type=”Composition” id=”start_mort_01”/>

<element type=”Composition” id=”start_mort_01” mode=”deactivate”/>

type Composition
id Name of composition_testbox to run if from world.xml.
vehicle_id Name of vehicle to use composition on, if required.
composition Name of composition to run if from the manager.

Optional attribute, only used to turn composition off:
Mode Which mode to use, “activate” or “deactivate”.

DebugString Element
This element is used to show debug strings while working on scripts, but it requires
the use of a console, which isn’t included in the retail version of the game.

<element type=”DebugString” msg=”Begin Game”/>

type DebugString
msg Text to show in console.

DisableUnit Element
This element is used to hide and deactivate units, mainly the C4 demolition units.

<element type=”DisableUnit” name_id=”c4_bunker01”/>

type DisableUnit
name_id Name of unit to disable.

EnableHud Element
This element is used to show the player HUD. It’s a mission specific element only
useable in that original mission.

<element type=”EnableHud”/>

type EnableHud

EnableHuman Element
This element is used to show a human carried by the player. It’s a mission specific
element, but would probably work fine with any group then the president.

<element type=”EnableHuman” group_id=”president”/>

type EnableHuman
group_id Name of group to carry in player.

EnableUnit Element
This element is used to show and activate units, mainly the C4 demolition units.

<element type=”EnableUnit” name_id=”c4_bunker01”/>

type EnableUnit
name_id Name of unit to enable.

ExplodeVehicle Element
This element is used to destroy vehicles by keep them in the game.

<element type=”ExplodeVehicle” vehicle_id=”apc_2”/>

type ExplodeVehicle
vehicle_id Name of vehicle to destroy.

GiveAmmo Element
This element is used to refill the player’s ammo.

<element type=”GiveAmmo”/>

type GiveAmmo

GroupJoinTeam Element
This element is used to add the members of a group to the player team. This is a
mission specific element for the original campaign, and can not be used on any other
groups then those composed of characters that are normally in the player team as AI.

<element type=”GroupJoinTeam” group_id=”friendly2”/>

type GroupJoinTeam
group_id Name of group to join player team.

MissionCommand Element
This element is used to turn activate or deactivate mission command areas so that the
player have access or don’t have access to those areas.

<element type=”MissionCommand” name=”search” action=”start”/>

<element type=”MissionCommand” name=”search” action=”stop”/>

type MissionCommand
name Name of mission command area to manipulate.
action Which mode to set, “start” or “stop”.

Music
This element is used to select soundtrack and play it during the mission.

<element type=”Music” cue=”3”/>

type Music
cue Number of track to play, “1”, “2” or “3”.

Objective Element
This element is used to create and manipulate objective information and waypoint
markers in the HUD and on the in-game map.

Examples of how to use this element can be found in chapter 4.

<element type=”Objective” id=”obj1” state=”add”
 headline_id=”mx_head_obj1” txt_id=”mx_txt_obj1”/>

<element type=”Objective” id=”obj1” state=”remove”/>

<element type=”Objective” id=”obj1_wp” state=”add”
 waypoint_id=”mx_obj1_wp” waypoint=”4124 9184.92 -612”/>

<element type=”Objective” id=”obj1_wp” state=”remove”/>

type Objective
id Internal name of objective or marker to manipulate.
state Set state on “id”, “add”, “update”, “remove” or “aborted”.

Optional attributes, used when adding or updating objective info:
headline_id Name of string var to use as headline, from string.xml.
headline Free text to use as headline, if no string var.
txt_id Name of string var to use as description, from string.xml.
txt Free text to use as description, if no string var.

Optional attributes, used when adding or updating waypoint info:
waypoint_id Name of string var to use as waypoint tag, from string.xml.

Or free text to use as waypoint tag.
waypoint Free text to use as headline.

Optional attribute, not in use by engine:
Mode Define primary or secondary objective, “1” or “2”.

OgrEnableExtractionCheck Element
This element is used when having objectives in OGR Coop Recon mode, to turn on or
off the ability to use the set extraction area.

<element type=”OgrEnableExtractionCheck” enable=”true”/>

<element type=”OgrEnableExtractionCheck” enable=”false”/>

type OgrEnableExtractionCheck
enable Which mode to set, “true” or “false”.

OgrSetGameOver Element
This element is used when having objectives in OGR Coop, to end the game in
failure.

<element type=”OgrSetGameOver”/>

type OgrSetGameOver

OrderCar Element
This element is used to give orders to cars and trucks.

There may be other order types available, like “patrol” that is used by “OrderTank”,
but nothing more then the “move” order is used in the original missions.

<element type=”OrderCar” vehicle_id=”panhard01” order=”move”
 position=”12350 8940 0”/>

type OrderCar
vehicle_id Name of vehicle to receive order.
order Order to give, “move”.
position Destination coordinates to use with order, “x y z”.

OrderHeli Element
This element is used to give orders to helicopters.

<element type=”OrderHeli” vehicle_id=”heli01” order=”start”
 up=”8000” forward=”1000” speed=”0.8”/>

<element type=”OrderHeli” vehicle_id=”heli01” order=”move”
 position=”-25365 309 2516” speed=”0.8” target=”true”/>

<element type=”OrderHeli” vehicle_id=”heli01” order=”land”
 position=”-28239 532 8682” speed=”0.62” target=”true”/>

<element type=”OrderHeli” vehicle_id=”heli01” order=”target”
 target_rot=”0 0 29” position=”-28239 532 868”/>

<element type=”OrderHeli” vehicle_id=”heli01” order=”target”
 position=”24476 16921 2953” speed=”1.0”/>

type OrderHeli
vehicle_id Name of helicopter to receive order.
order Order to give, “start”, “move”, “target” or “land”.

Optional attributes:
up Set distance for helicopter to rise up, in centimetres.
forward Set distance for helicopter to move forward, in centimetres.
position Set destination coordinates, “x y z” in world system.
target_rot Set rotation destination in degrees, “x y z” (z is ccw).
target Set if helicopter must reach set destination for new order.
speed Set how fast the helicopter should move.

OrderTank Element
This element is used to give orders to tanks.

Notice that when giving the order “patrol”, this element has contents in the form or
each destination waypoint.

<element type=”OrderTank” vehicle_id=”t1” order=”set_fire_ready”
 value=”true”/>

<element type=”OrderTank” vehicle_id=”t1” order=”set_fire_ready”
 value=”false”/>

<element type=”OrderTank” vehicle_id=”t1” order=”move”
 ai=”true” world_x=”-6942” world_y=”-13449”/>

<element type=”OrderTank” vehicle_id=”t1” order=”patrol” ai=”true”>
 <waypoint position=”12500 4500 0”/>
 <waypoint position=”2500 4500 0”/>
</element>

type OrderTank
vehicle_id Name of tank to receive order.
order Order to give, “move”, “patrol” or “set_fire_ready”.

Optional attributes:
ai Set state of tank AI, “true” or “false”.
value Set state of “set_fire_ready” order, “true” or “false”.
world_x Set destinations “x” coordinate for “move” order.
world_y Set destinations “y” coordinate for “move” order.
waypoint position Set “patrol” order waypoint coordinate, “x y z”.

Outro Element
This element is used to run the campaign outro sequence, and as such is campaign
specific for the original campaign.

<element type=”Outro” vehicle_id=”extract_heli”/>

type Outro
vehicle_id Name of vehicle to feature in outro.

RemoveGroup Element
This element is used to remove a group from the mission. When this element is used,
the game considers the removed group as killed.

<element type=”RemoveGroup” group_id=”guards01”/>

type RemoveGroup
group_id Name of group to remove.

RemoveVehicle Element
This element is used to remove a vehicle from the mission. When this element is used,
the game considers the removed vehicle as destroyed and all groups inside it as killed.

<element type=”RemoveVehicle” vehicle_id=”insert_heli”/>

type RemoveVehicle
vehicle_id Name of vehicle to remove.

SaveGame Element
This element is used to save the current game situation, works in SP mode only.

<element type=”SaveGame” name=”check_point03”/>

type SaveGame
name Name to give save game entry.

ScrambleHud Element
This element is used to activate or deactivate HUD interference, a simulation of being
jammed.

<element type=”ScrambleHud” id=”jamming01” mode=”add”
 position=”-21794.572 10892.932 0” range=”23500”/>

<element type="ScrambleHud" id="jamming01" mode="remove"/>

type ScrambleHud
id Internal name of scrambler to manipulate.
mode Which mode to set, “add” or “remove”.

Optional attributed, used with “add” mode:
position Source world coordinates for scrambler, “x y z”.
range Range of scrambler, radius in centimetre.

SetAiGetUp Element
This element is used to order a group to get up and draw weapon, if initiated in a
passive mode.

<element type=”SetAiGetUp” group_id=”tank_crew01”/>

type SetAiGetUp
group_id Name of group to give command.

SetCanTakeOrders Element
This element is used to toggle player control over a vehicle.

<element type=”SetCanTakeOrders” vehicle_id=”tank01” value=”true”/>

<element type=”SetCanTakeOrders” vehicle_id=”tank01” value=”false”/>

type SetCanTakeOrders
vehicle_id Name of vehicle to set control on.
value Which mode to set, “true” or “false”.

SetHeliCloseDoors Element
This element is used to order a helicopter to close its doors.

<element type=”SetHeliCloseDoors” vehicle_id=”heli01”/>

type SetHeliCloseDoors
vehicle_id Name of helicopter to give command.

SetHeliDrop Element
This element is used to make a helicopter to allow the player to descend on fast-rope,
if fast-rope was selected for the helicopter in the map editor.

<element type=”SetHeliDrop” vehicle_id=”heli01”/>

type SetHeliDrop
vehicle_id Name of helicopter to give command.

SetHeliDropRope Element
This element is used to make a helicopter lower fast-rope to the ground, if fast-rope
was selected for the helicopter in the map editor.

<element type=”SetHeliDropRope” vehicle_id=”heli01”/>

type SetHeliDropRope
vehicle_id Name of helicopter to give command.

SetHeliStand Element
This element is used to display to “press x” message to player when allowed to exit
helicopter. Or to make helicopter with fast-rope open its doors.

<element type=”SetHeliStand” vehicle_id=”heli01”/>

type SetHeliDropRope
vehicle_id Name of helicopter to give command.

SetIndestructable Element
This element is used to make a dynamic prop indestructible.

<element type=”SetIndestructable” name_id=”fueltrailer”/>

type SetIndestructable
name_id Name of dynamic prop to manipulate.

SetMusicMood Element
This element is used to manipulate the soundtrack settings while playing.

<element type=”SetMusicMood” tempo=”-500” mood=”-500”/>

<element type=”SetMusicMood” mood=”-1000”/>

<element type=”SetMusicMood” tempo=”500”/>

type SetMusicMood

Requires at least one of these optional attributes:
tempo Adjust music tempo.
mood Adjust music mood.

SetPlayerControlled Element
This element is used to enable or disable groups to follow the player team.

It can also set a destination vehicle for the group, which will disable the player control
when the group gets close that that vehicle.

Tip: The “value” attribute is not really required as it will default to “true” when it’s not used. But
I would always use it so that I get a better overview of my script.

<element type=”SetPlayerControlled” group_id=”tank_crew01”
 value=”true” vehicle_id=”tank01” target_is_tank=”true”/>

<element type=”SetPlayerControlled” group_id=”tank_crew01”
 value=”false” dont_change_slot=”true”/>

<element type=”SetPlayerControlled” group_id=”president”
 value=”true” vehicle_id=”evac” pub_name=”support_president”/>

<element type=”SetPlayerControlled” group_id=”president”
 value=”false” pub_name=”support_president”/>

type SetPlayerControlled
group_id Name of group to add or remove from player control.
value Which mode to set, “true” or “false”.

Optional attributes:
vehicle_id Name of destination vehicle, if needed.
target_is_tank Set if destination vehicle is a tank, default is “false”.
pub_name Name of string var to use in control list, from string.xml.
dont_change_slot Set to “true” or “false”, mission specific attribute.

SetSlot Element
This element is used to change slot for a unit. This affects how it is used in the game.

Slot “24” is used by friendly vehicles, slot “25” is used by hostile vehicles and slot
“17” is used by neutral vehicles.

<element type=”SetSlot” name_id=”first_scrambler” slot=”20”/>

type SetSlot
name_id Name of unit to manipulate.
slot Set which slot to place unit in.

SetToSupply Element
This element is used to activate or deactivate a vehicles ability to give supplies to the
player team.

Tip: The “mode” attribute is not really required as it will default to “true” when it’s not used. But I
would always use it so that I get a better overview of my script.

<element type=”SetToSupply” vehicle_id=”stryker01” mode=”true”
 event=”enter_equipment” slot_name=”backpack”/>

<element type=”SetToSupply” vehicle_id=”stryker01” mode=”true”
 event=”enter_equipment”/>

<element type=”SetToSupply” vehicle_id=”stryker01” mode=”false”/>

type SetToSupply
vehicle_id Name of vehicle to manipulate.
mode Which mode to set, “true” or “false”.

Optional attributes:
event Name of event to run after player requested supplies.
slot_name Set where the supplies will be sent.

SetTransportType Element
This element is used to set a vehicle to insert of extract a group.

<element type=”SetTransportType” vehicle_id=”heli01”
 transport_type=”insertion”/>

<element type=”SetTransportType” vehicle_id=”heli02”
 transport_type=”extraction”/>

<element type=”SetTransportType” vehicle_id=”heli01”
 transport_type=”extraction” group_id=”president”/>

type SetTransportType
vehicle_id Name of vehicle to manipulate.
transport_type Which mode to set, “insertion” or “extraction”.

Optional attribute to use when not dealing with the player team:
group_id Name of group to interact with vehicle.

SetVipTarget Element
This element is used to make a Cypher target a group.

<element type=”SetVipTarget” vehicle_id=”cypher”
 target_name=”ramirez” event=”enter_ramirez”/>

type SetVipTarget
vehicle_id Name of Cypher to manipulate.
target_name Name of target group.
event Name of event to run when target found.

ShowInventory Element
This element is used to show the inventory selection menu.

<element type=”ShowInventory”/>

<element type=”ShowInventory” disable_weapon=”predator”/>

<element type=”ShowInventory” tutorial=”true”/>

type ShowInventory

Optional attributes:
disable_weapon Name of weapon to hide inside menu.
tutorial Run tutorial inside inventory menu.

ShowMessage Element
This element is used to display a message for the player team.

<element type=”ShowMessage” msg_id=”m11_message_briefing”/>

<element type="ShowMessage" msg=”Mission completed successfully!”/>

type ShowMessage

Requires one of these optional attributes:
msg_id Name of string var to use as message, from string.xml.
msg Free text to use as message, if no string var.

SimulateDriving Element
This element is used to simulate that the Stryker is moving while the player is inside.

<element type=”SimulateDriving” vehicle_id=”stryker01”
 action=”start” mute=”true”/>

<element type=”SimulateDriving” vehicle_id=”stryker01”
 action=”start”/>

<element type=”SimulateDriving” vehicle_id=”stryker01”
 action=”stop”/>

type SimulateDriving
vehicle_id Name of Stryker to manipulate.
action Which action to take, “start” or “stop”.

Optional attribute:
mute Turn off the sound, “false”. “true” is default if not used.

SupportDone Element
This element is used to tell a vehicle that its support role is over.

<element type=”SupportDone” vehicle_id=”f15”/>

type SupportDone
vehicle_id Name of vehicle to give order.

TriggerEvent Element
This element is used to call another event to execute from within an event.

<element type=”TriggerEvent” event=”heli_ride”/>

type TriggerEvent
event Name of event to trigger

TriggerRandomEvent Element
This element is used to add replay ability to the mission, by calling a random event to
execute from a given list depending on a random value compared to a given chance
list.

You only need to use one event attribute and one chance attribute for this element to
work. The values given to the chance attributes are the upper limit for its connected
event to get called, RPG players will recognize this as a D100 list.

For example if “chance1” is set to “40”, “chance2” is set to “55”, “chance3” is set to
“74” and “chance4” is set to “90”, then:
”event1” will get called if the random number is 0 or up to 40,
”event2” will get called if the random number is greater then 40 and up to 55,
”event3” will get called if the random number is greater then 55 and up to 74,
”event4” will get called if the random number is greater then 74 and up to 90,
and no event at all will get called if the random number is greater then 90.

<element type=”TriggerRandomEvent” event1=”ev_a” chance1=”25”
 event2=”ev_b” chance2=”50” event3=”ev_c” chance3=”75”
 event4=”ev_d” chance4=”100”/>

<element type=”TriggerRandomEvent” event1=”ev_a” chance1=”33”
 event2=”ev_b” chance2=”66” event3=”ev_c” chance3=”100”/>

<element type=”TriggerRandomEvent” event1=”ev_a” chance1=”50”
 event2=”ev_b” chance2=”100”/>

<element type=”TriggerRandomEvent” event1="ev_a” chance1=”50”/>

type TriggerRandomEvent
event1 Name of first event that could get called.
chance1 Number between 1 and 100, percent chance for “event1”.

Optional attributes, but each event* requires you to use its chance* counterpart:
event2 Name of second event that could get show.
event3 Name of third event that could get show.
event4 Name of forth event that could get show.
chance2 Number between chance1 and 100, chance for “event2”.
chance3 Number between chance2 and 100, chance for “event3”.
chance4 Number between chance3 and 100, chance for “event4”.

UnitInArea Element
This element is used to activate or deactivated predefined area conditions.

<element type=”UnitInArea” area=”area_01” state=”activate”/>

<element type=”UnitInArea” area=”area_01” state=”deactivate”/>

type UnitInArea
area Name of area condition to manipulate.
state Which state to set, “activate” or “deactivate”.

UnitSequence Element
This element is used to trigger an animation sequence imbedded in a unit.

<element type=”UnitSequence” name_id=”gasstation”/>

<element type=”UnitSequence” name_id=”blackhawk_m10_crashanim”/>

type UnitSequence
name_id Name of unit to trigger sequence in.

UnitVisibility Element
This element is used the show or hide props.

<element type=”UnitVisibility” name_id=”parachute” action=”show”/>

<element type=”UnitVisibility” name_id=”parachute” action=”hide”/>

type UnitVisibility
name_id Name of unit to manipulate.
action Which action to take, “show” or “hide”.

UseVar Element
This element is used to manipulate mission variables.

<element type=”UseVar” id=”variable_a” set=”5”/>

<element type=”UseVar” id=”variable_a” add=”2”/>

<element type=”UseVar” id=”variable_a” mul=”5”/>

<element type=”UseVar” id=”variable_s” set=”event_a”/>

<element type=”UseVar” id=”variable_b” set_random=”20”/>

<element type=”UseVar” id=”variable_c” set_var=”variable_a”/>

<element type=”UseVar” id=”variable_c” add_var=”variable_b”/>

<element type=”UseVar” id=”variable_c” mul_var=”variable_a”/>

type UseVar
id Name of variable to manipulate.

Requires the use of one of these optional attributes:
set Set “id” to given value or string.
add Add given value to value in “id”.
mul Multiply value in “id” with given value.
set_var Copies value from given var into “id”.
add_var Add value in given var to value in “id”.
mul_var Multiply value in “id” with value in given var.
set_random Set “id” to a random value between “0” and given value.
set_time Set “id” to current game time, in seconds.

Chapter 8: Demolition

Now we have all the pieces that can be used when scripting a mission in GR:AW, but
there are still some special case that you have to be aware of. One of those is how to
use the demolition props to let the player place C4 charges, which is a common
objective requirement in tactical games, so let’s take a look at that.

Our goal in this chapter is to setup a demolition prop so that the player can activate it
in game and let the physics engine rain havoc on everything inside its blast area.
Sounds simple, and it is. But when we try to do this the first time we will probably
miss that a special event is needed, which causes the game to crash whenever the
player tries to place a demolition charge. But when that happens we use our logics and
take a look in the original files to see how it’s setup in those, and find that you have to
have an event that is automatically called when the charge is places, and whose name
is dependant on which C4 prop is used. I’ll explain that in more detail with an
example.

Activate Prop
Let’s say that we place the “c4_aa1” prop in the map editor. Save the world.xml and
go into the mission.xml to add the scripting. The first thing we will have to do in an
event before the player can reach the prop is to enable it.

We do this by using the “EnableUnit” element type, described in chapter 6, in a
suiting mission event. Let’s say that we have an event that is triggered at a good time
during the mission, which will only have this element as content.

Then that part of the script will look like this:
<event name=”enable_c4”>
 <element type=”EnableUnit” name_id=”c4_aa1”/>
</event>

Up to here everything is as normal and now the player will be able to place the
demolition charge. But the mission will crash.

Special Demolition Event
What we need now is the special event which is hard coded to that specific C4 prop. If
you look at the name of all the C4 props available, you’ll notice that they have a
common part and an individual part in their name.

List of available C4 props:
c4_aa1 c4_aa1 c4_aa3 c4_blow_antenna
c4_bunker01 c4_bunker02 c4_gasstation c4_blow_powerstation

“c4_” is the common part, and the rest is the individual part. So in our case the
individual part is “aa1”, as we are using the “c4_aa1” prop.

Now that we know this we can create the special event, which in our case has to be
given then name “aa1_trigger”. I guess you can see the connection. The name has
to first consist of the individual part of the props name, followed by the sting
“_trigger”.

This part of the script will then look like this:
<event name=”aa1_trigger”>
</event>

This will automatically run when the player places the demolition charge, but the
event doesn’t need to have any contents, it just needs to exist of the game will crash as
it can’t find it. GRIN uses this event to do a temporary manipulation of the music
while the charge is doing its countdown.

That code would look like this instead:
<event name=”aa1_trigger”>
 <element type=”SetMusicMood” tempo=”200” mood=”200”/>
 <element type=”SetMusicMood” tempo=”-1000” mood=”-1000”
 start_time=”15.0”/>
</event>

That is all we need for the C4 to work. They don’t have to be connected to an
objective, but can be placed wherever you want the player to be able to place a
demolition charge. The game physics engine will handle the rest. But as the prop
names are important and limited, you can only have one of each prop on each map,
which gives you only eight locations where to allow the player to do this during each
mission.

Demolition Recap
Now we know all that is needed for a demolition prop to work.

- Place C4 prop in map editor and remember its name.
- Enable C4 prop in a mission event.
- Create special activation event named “*propname individual part*_trigger”.

Chapter 7: Timer

People have been complaining that there is no timer in GR:AW, but there really is. So
in this chapter we’ll take a look at how to setup a simple timer and a stoppable timer.

Simple Timer
All you need is one trigger and two events. The basic idée behind the timer is that we
call the first event, which acts as a delay before it calls the second event, which is the
one we actually want to execute.

First we create whatever trigger you want to start it. What conditions it has is not
important for the timer function. Just set them to run an event called
“star_timer_30sec”.

Then we create the event that is called by the trigger if all its conditions are true. This
event will start the timer. As contents to this event we’ll add an element of the type
"TriggerEvent" that is given the name of the event we want to run when the timer
runs out but setting it in the attribute “event”. We’ll also need to use the
“start_time” attribute, as this is the actual timer. Set the attribute to “30.0” seconds.

This part of the script looks like this:
<event name=”start_timer_30sec”>
 <element type=”TriggerEvent” event=”done_timer_30sec”
 start_time=”30.0”/>
</event>

Finally we create the event that is called by the timer, which can hold any content you
want to have. Then the timer is completed.

This part of the script looks like this:
<event name=”done_timer_30sec”>
 <element type=”....”/>
 <element type=”....”/>
</event>

Stoppable Timer
To create a stoppable timer we would first complete the simple timer described above,
then add one extra event and any amount of triggers needed to set the conditions for
that event.

So let’s say we have the events from earlier done. We have a trigger for the timer to
start and create a trigger with the conditions to stop the timer, which we’ll name
“stop_timer_30sec”.

The events from earlier should look like this:
<event name=”start_timer_30sec”>
 <element type=”TriggerEvent” event=”done_timer_30sec”
 start_time=”30.0”/>
</event>

<event name=”done_timer_30sec”>
 <element type=”....”/>
 <element type=”....”/>
</event>

To add the ability to stop the timer we’ll simply use the element type “BreakEvent”
as content of our new event, and set its “event” attribute to the name of our timer
event, “start_timer_30sec”. When this new event is called, it will immediately stop
the event doing the countdown, and so preventing it from calling the event it was
supposed to when the time had run out. If the timer event has already called the next
event, nothing will happen as the stop was triggered to late.

That script looks like this:
<event name=”stop_timer_30sec”>
 <element type=”BreakEvent” event=”start_timer_30sec”/>
</event>

Chapter 8: Override Original SP/Coop Mission

In this chapter I've used my first mission mod to show what I needed to do in order to
get it to override an original mission. Before you can do the things I’ll describe in this
chapter you’ll have to do some preparations. First you have to complete your work on
the map inside the map editor (world.xml) and your script (mission.xml), the later
should be placed in the custom_levels\work\"your mod"\script folder. Once
you have done that, you should export everything from the map editor. As you
probably notice, there is no option for SP/Coop when exporting so I used the OGR
Coop exporter option, which really doesn’t matter that much. The reason we need to
export is to generate the new lightmaps, AI graph and some other files.

You should also have the quick.bundle extracted, and over that the patch.bundle
should be extracted so the patch replaces all files updated in it and everything is the
latest version. You’ll need to get some files from the original game and edit slightly to
get this to work, and also use as reference when editing your own files. I'll refer to
these file locations as if you extracted the bundles into local\bundle, and removed
the data folder step like described in other tutorials on opening the bundles.

When all that is done, you're ready to create the override. First you have to decide
which mission to override. In my case it was simple as I used an original map to
create my mission on, so I did an override for the map I used, in this case
“mission05”. But I could just as easily have used any of the other missions as you
can override all files you need anyhow.

Folders
After that is decided we can create the folder structure needed. In the local folder I
created my own sub-folder, which we can call “my_mod”. Inside that folder we need a
few different sub-folders, depending on how the mission is built, but we'll always
need the “levels”, “strings” and “textures” folders.

Inside the “levels” folder we need to create the folder specific for the mission we
decided to override, in this case on called “mission05”. Inside that one there should
also be a folder called “xml”.

Inside the “textures” folder we need to create a folder called “lightmaps”. Once
again inside that one, we need to create a folder specific for the mission we've decided
to override, “mission05”, and inside that a folder called “atlas0”. Some original
missions also use an “atlas1” folder, so in the case that you’re going to override one
of those you'll need that one as well.

We now have a folder structure that looks like this:
local -> my_mod -> levels -> mission05 -> xml
local -> my_mod -> strings
local -> my_mod -> textures -> lightmaps -> mission05 -> atlas0

Files
Now it's time to start placing and editing the files needed for the override.

Into local\my_mod\strings you should copy menu.xml found in the
local\bundle\strings folder. This is only needed so that we can edit the displayed
name of the mission in the selection menus. Open it in any text/xml editor, do a search
for the string “campaign_mission”, and you'll find the section that sets the name for
all the missions. Replace the string inside the quotes following the mission you’re
going to override with the name you want to use for your mission. In my case I
replaced the string following “campaign_mission_5” with the name I had given my
mission, “Titan Skull”.

The edited line looks like this:
<string id="campaign_mission_5" value="Titan Skull"/>

Next we'll go into the local\my_mod\levels\mission05 folder, or whichever folder
you have depending on which mission you’re overriding. Into this folder we have to
put the new AI graph, mission xml, mission diesel, texture scope and materials files.

You'll find that when you exported you mission in the map editor, it created a new
folder hierarchy inside custom_levels. In this hierarchy you'll find a copy of all the
files that where included in the bundle created in the export. Great! Now let’s look for
what we need.

First go to custom_levels\work_temp\1\data\levels\custom_levels\"your
mod". Inside you'll find the AI graph, texture scope, materials, as well as mission
diesel and xml mission files. Copy all of those into the
local\my_mod\levels\mission05 folder.

Now rename the mission diesel and mission xml files to the same name that the
mission you’re overriding is using, in my case “mission05.diesel” and
“mission05.xml”. Then open the renamed mission xml file in your text/xml editor.
Among the first lines you'll find a few “load_scene” tags, which we'll have to edit a
little. Open the real mission xml file, in my case
“local/bundles/levels/mission05/mission05.xml”, and copy all the
“load_scene” tags with their contents. Use those copies to replace all “load_scene”
tags in your new mission xml file.

In my case those tags looked like this:
<load_scene file="/data/levels/mission05/mission05.diesel"
use_lightset="true" materials="/data/levels/mission05/materials.xml">
 <object name="world_bb" hidden="true"/>
 <!-- Collisions -->
 <xi:include
 href="xml/mission05_collision.xml#xpointer(/collision/*)"/>
 <global_ambient color="60 60 40"/>
</load_scene>
<load_scene file="/data/objects/lens/normal_lens.diesel">
 <object name="normal_lens" hidden="true"/>
</load_scene>
<load_scene file="/data/objects/lens/zoom_lens.diesel">
 <object name="zoom_lens" hidden="true"/>
</load_scene>

Save your edited mission xml and exit the editor. Make a copy of your edited mission
xml file and rename the new copy the same as the original but with “_ni” at the end
before the file type, like “mission05_ni.xml”. This new file is used if the MP Coop
server has checked the “skip insertion” option. If you have a long insertion in your
mission I suggest you redo that part of the script inside this new mission xml file to
allow users to skip it, otherwise just keep it the same as the normal mission xml.

The “texture_scope.xml“ may also need to be edited. Although we won’t know if
this is needed until we have tested the map inside the game. If there are props missing
textures (which shows up as yellow and blue squares), “texture_scope.xml” is
missing some entries. If you're using an original map to build your mission on, you
should add all the entries found in that maps original “texture_scope.xml” into
yours (make sure there are no double entries though), or there may be problems with
the environment itself.

Next we'll go into the local\my_mod\levels\mission05\xml folder. Into this we’ll
again have to put a few files from the exported folder hierarchy. Copy all files from
custom_levels\work_temp\1\data\levels\custom_levels\"your mod"\xml
into this folder.

Open up world.xml in your text/xml editor and replace the value given to the
”level_name“ attribute on line 2, with the name of the mission you’re overriding,
level_name="titan_skull" turns to level_name="mission05". Save the file and
exit the editor. Make a copy of the world xml file and, like we did with the mission
xml, add “_ni” to the name before the file type, making it “world_ni.xml”. Like
with the mission xml, this special world xml is only used when the server has checked
the “skip insertion” option in MP Coop mode.

Finally we'll have to copy our new lightmaps to their correct location. Copy all files
from custom_levels\work_temp\1\data\textures\custom_levels\"your
mod"\lightmaps\atlas0 to you override folder
local\my_mod\textures\lightmaps\mission05\atlas0.

Open “tdb_atlas_set.xml“ in your text/xml editor and edit the name entry value on
the first line. It should be the location you copied the file to, in this case
“lightmaps/mission05/atlas0”. Save the file and exit the editor. If you have an
“atlas1” folder, repeat the same procedure for that one but from
custom_levels\work_temp\1\data\textures\custom_levels\"your
mod"\lightmaps\atlas1 to
local\my_mod\textures\lightmaps\mission05\atlas1 of course. And don’t
forget to edit that “tdb_atlas_set.xml“ as well.

That should be it for your basic mission.

Extra
If you’re using a string xml file to store your strings used for objectives and messages,
just put that in local\my_mod\strings as well and rename it after the mission you’re
overriding, in my case “mission05.xml”.

I also edited “group_manager.xml“ to create a new prisoner group type. That edited
file has to be included for the mission to work, and it should be placed in a folder we
don't currently have. So in the local\my_mod folder, create a new folder called “lib”
with a sub-folder called "manager", and finally inside that another called “xml”. Copy
your edited “group_manager.xml“ file into the last created folder,
local\my_mod\lib\managers\xml.

This is the final list of files that I have inside my override mod folder:
local\my_mod\levels\mission05\ai.gph
local\my_mod\levels\mission05\materials.xml
local\my_mod\levels\mission05\mission05.diesel
local\my_mod\levels\mission05\mission05.xml
local\my_mod\levels\mission05\mission05_ni.xml
local\my_mod\levels\mission05\texture_scope.xml
local\my_mod\levels\mission05\xml\ambient_cubes.bin
local\my_mod\levels\mission05\xml\massunit.bin
local\my_mod\levels\mission05\xml\world.xml
local\my_mod\levels\mission05\xml\world_ni.xml
local\my_mod\levels\mission05\xml\zones.xml
local\my_mod\lib\managers\xml\group_manager.xml
local\my_mod\strings\menu.xml
local\my_mod\strings\mission05.xml
local\my_mod\textures\lightmaps\mission05\atlas0\tdb_atlas_set.xml
local\my_mod\textures\lightmaps\mission05\atlas0\atlas.dds

Note: If you edit the group_manager.xml, you'll have to place it in
local\english\lib\managers\xml for the map editor to detect these changes and list your
new group. The same logics apply to all other xml files you edit to use in the map editor. Place them in
a mirror folder to where you found them in the local\bundle hierarchy, but inside
local\english hierarchy instead. It’s also important that you include them inside your override
mod folder as well.

Example 1: End Game If Serial Killer Before Entered Area

This example is based on a question posted by Tinker in the gr.net forum.

The problem given was to create a script that would end the game if the player has
killed a set number of enemies, let’s say 6 in this example, before reaching a specific
goal area on the map.

First we have to create the items needed in the map editor but for this example we’ll
pass on that. Lets’ instead say that we have the enemy groups placed and all of them
have “group_id” set to “enemy_kill_team”. We also have the area where the player
will be safe, which is name “goal_area”. With that clear, let’s move on to the script
itself.

Breakdown
First we have to break this down. What do we need?

We need a trigger that will turn off the possibility that the game will end, when the
player reaches “goal_area”. For this we’ll need an area condition that checks if a
member of the player group is there, and an event that the trigger will call.

We need a trigger that will end the game if too many of the enemy soldiers have been
killed. For this we’ll also need the event that the trigger will call. But to make sure
that it is not triggered if the enemies are killed after the player has reach “goal_area”
we must have a condition that we are sure that it’s always “false” after that has
happened. For this we’ll use another area condition, as we can turn those on and off.
But as we want it to be “true” before the player in at “goal_area”, this condition has
to be that no players are in the area.

Note: We could use a variable, but then the trigger would still call it’s event as no variable checks are
available in triggers, and then we’d have to use an extra event that checks if the variable condition is
true or not before calling the event that ends the game.

This is enough to start writing the script.

Area Conditions
Let’s start with defining the two area conditions we figured out that we’d need.

The first was to detect if a member of the player team was inside “goal_area”. We
want this to have a quite short interval to make sure that it detects the players as fast a
possible when they reach the area. Let’s call this condition “safe_area” so that we
remember what it’s for.

The script looks like this:
<area_group name=”safe_area” area_name=”goal_area”
 group_id=”friendly1” interval=”0.3” condition=”1”/>

The second was to detect that no member of the player team was inside “goal_area”.
This can have a little longer interval as it’s not as critical that it’s precise in time, and
let’s call this condition “death_area”.

The script looks like this:
<area_group name=”death_area” area_name=”goal_area”
 group_id=”friendly1” interval=”1.0” condition=”0”/>

Triggers
We now have everything needed for the triggers so let’s script those.

First we needed a trigger with the condition that the player was in the “goal_area”.
We only want this trigger to be able to be successful run once, and it should call an
event that makes the player safe which we’ll call just that, “player_safe”.

The script looks like this:
<user name=”player_safe” type=”once”>
 <trigger type=”UnitInArea” area=”safe_area”/>
 <event name=”player_safe”/>
</user>

Then we needed a trigger with the condition that the player was not in “goal_area”,
as well as the condition that 6 enemies had been killed. This should also only be able
to successfully run once, and it should call en event that ends the game which we’ll
call “game_over”.

The script looks like this:
<user name=”killed_enemies” type=”once”>
 <trigger type=”UnitInArea” area=”death_area”/>
 <trigger type=”EnemyGroup” name=”enemy_kill_team”>
 <enemy group_id=”enemy_kill_team” condition=”6”/>
 </trigger>
 <event name=”game_over”/>
</user>

Events
Finally we need the events that are called by the triggers. But we also need to activate
the two area conditions before the players can either reaches the “enemy_kill_team”
and can start killing them, or reach the “goal_area” and be safe.

To make this easy, as we don’t know the entire situation in the mission, we’ll do this a
mission startup.

The script looks like this:
<event name=”start_game”>
<element type=”UnitInArea” area=”death_area” state=”activate”/>
<element type=”UnitInArea” area=”safe_area” state=”activate”/>
</event>

Then we need the event that is called to make the player safe. We set that to be called
“player_safe” and what it has to do, based on our breakdown, is turn the
“death_area” condition off to stop the possibility to end the game, as well as it’s
own “safe_area” condition to stop it form doing continuous checks.

The script looks like this:
<event name=”player_safe”>
 <element type=”UnitInArea” area=”death_area” state=”deactivate”/>
 <element type=”UnitInArea” area=”safe_area” state=”deactivate”/>
</event>

And finally we’ll need the event that is called to end the game. We set that to be
called “game_over” and all it has to do is declare the mission a failure.

The script looks like this:
<event name=”game_over”>
 <element type=”GameOver”/>
</event>

Outro
Now we have our final script, which does exactly what we set out to achieve. And that
was the last tutorial in this document. I hope you’ve learned the basics about scripting
for GR:AW and I’m looking forward to testing out any mission you create.

Good Luck.

Appendix 1: GR to GR:AW Trigger Translator

This appendix lists all available triggers in Ghost Recon and shows which triggers in
Ghost Recon: Advanced Warfighter, if any available, that could be used to do the
same thing.

GR Trigger GR:AW Trigger

ActorFired (n/a)
Black (n/a)
Call (not needed, call event directly)
DeathActor EnemyGroup
DeathAnyActor EnemyGroup
DeathCompany EnemyGroup
DeathCompanyMember EnemyGroup
DeathPlatoon EnemyGroup
DeathPlatoonMember EnemyGroup
DeathTeam EnemyGroup
DeathTeamMember EnemyGroup
DeathVehicle Vehicle
DemoChargePlaced (not needed, use special c4 event)
DoorOpen (not needed, no doors to open)
DoorClosed (not needed, no doors to close)
EscortAborted (n/a)
EscortCompleted (n/a)
EscortInitiated (n/a)
LoopActors (n/a)
LoopCompanies (n/a)
LoopPlatoons (n/a)
LoopTeams (n/a)
MapObjectDestroyed UnitDestroyed
NoPlayerLeft EnemyGroup
PreAction (not needed, use special event)
ProximityActor UnitInArea
ProximityCompany UnitInArea
ProximityPlatoon UnitInArea
ProximityTeam UnitInArea
ProximityVehicle UnitInArea
Respawn (n/a)
RoutActor EnemyGroup
RoutCompany EnemyGroup
RoutPlatoon EnemyGroup
RoutTeam EnemyGroup
SkipCinemtic (not needed, uses special file)
Startup (not needed, use special event)

GR Trigger GR:AW Trigger

TimeElapsed (not needed, call event directly)
TimerExpired (not needed, call event directly)
TimerExpiredForGame (n/a)
UICommandModeActivated (n/a)
UIFireFieldSet (n/a)
UIROESet (n/a)
UITeamSelected (n/a)
UIWaypointSet (n/a)
(n/a) HeliCleared
(n/a) TeamInTransport
(n/a) TeamMemberJoined
(n/a) TransportCleared

Thanx for the help:

Grin_Wille

Grin_GeckoGore

Rocky

Contact Infromation:

E-Mail: WolfsongMods@Hotmail.com

MSN: WolfsongMods@Hotmail.com

mailto:WolfsongMods@Hotmail.com

	Intro
	Area Conditions
	Triggers
	 Events
	World.xml
	 Area Condition
	Area Condition Activation Event
	Area Trigger
	Enemy Activation Event
	Vehicle Area Conditions
	Other Area Condition Syntax Versions
	 Add Objective Event
	 Separate Waypoint Control
	String XML
	Trigger Condition Quick List
	Trigger Condition Descriptions
	 AND Conditions
	 OR Conditions
	Start Time
	Event Element Type Quick List
	 Event Element Type Descriptions
	Activate Prop
	 Special Demolition Event
	Simple Timer
	 Stoppable Timer
	Folders
	 Files
	Extra
	Breakdown
	Area Conditions
	Triggers
	 Events
	Outro

