

2.2 - Unreal Networking Architecture

Document Summary: Overview of Unreal Networking Architecture, originally

written by Tim Sweeney.

Document Changelog: Ported and updated by Steve Polge; updated and

maintained by Richard Nalezynski.

• Unreal Networking Architecture

o Overview

� Peer-to-Peer Model

� Client-Server Model

� Unreal Networking Architecture

o Basic Concepts

o Actors

� Roles

� Relevancy

� Prioritization

o Replication

� Replication Overview

� UnrealScript: the Replication Statement

� Replication Conditions

� Variable Replication

� Function Call Replication

� Replication Patterns

o Simulated Functions and States

o Gameplay

� ReplicationInfo classes

� The WorldInfo class

� The GameInfo class

� Player Movement and Prediction

� Player Animation (Client-Side)

� Dead Bodies

� Weapon Firing

� Projectiles

� Weapon Attachments

� Sounds

� Physics

o Bandwidth Performance Tips

o Network Driver Implementation

o Unreal Wire Protocol

o The Present and The Future

o Useful links

Overview

Multiplayer gaming is about shared reality: that all of the players feel they are in

the same world, seeing from differing viewpoints the same events transpiring

within that world. As multiplayer gaming has evolved from the little 2-player

modem games that characterized Doom, into the large, persistent, more free-

form interactions of games like Quake 2, Unreal, and Ultima Online, the

technologies behind the shared reality have evolved tremendously.

One important thing to realize is that if you plan to support networked

multiplayer in your game, build it in and test it as you develop your game!

Building an efficient networking implementation will have a significant impact on

your game object design decisions. Retrofitting a solution is a hard and costly

effort!

Peer-to-Peer Model

In the beginning, there were peer-to-peer games like Doom and Duke Nukem. In

these games, each machine in the game was an equal. Each exactly

synchronized its input and timing with the others, and each machine carried out

the same exact game logic on exactly the same inputs. In conjunction with

completely deterministic (i.e. fixed-rate, non-random) game logic, all players in

the machine perceived the same reality.

The advantage of this approach was simplicity. The disadvantages were:

• Lack of persistence. All of the players had to start the game together,

and new players couldn't come and go as they pleased.

• Lack of player scalability. Because of the lock-step nature of the

networking architecture, the coordination overhead and chance of network-

induced failure increases linearly with the number of players.

• Lack of frame rate scalability. All of the players had to run at the same

internal frame rate, making it difficult to support a wide variety of machine

speeds.

Client-Server Model

Next came the monolithic client-server architecture, pioneered by Quake, and

later used by Ultima Online. Here, one machine was designated "server", and

was responsible for making all of the gameplay decisions. The other machines

were "clients", and they were regarded as dumb rendering terminals, which sent

their keystrokes to the server, and received a list of objects to render. This

advancement enabled large-scale Internet gaming, as game servers started

springing up all over the Internet. The client-server architecture was later

extended by QuakeWorld and Quake 2, which moved additional simulation and

prediction logic to the client side, in order to increase visible detail while lowering

bandwidth usage. Here, the client receives not only a list of objects to render,

but also information about their trajectories, so the client can make rudimentary

predictions about object motion. In addition, a lock-step prediction protocol was

introduced in order to eliminate perceived latency in client movement.

Still, there were some disadvantages to this approach:

• Lack of open-endedness. When users and licensees create new types of

objects (weapons, player controls, etc), glue logic must be authored to

specify the simulation and prediction aspects of those new objects.

Difficulties of the prediction model: In this model, the network code and the

game code are separate modules, yet each must both be fully aware of the

implementation of the other, in order to keep the game state reasonably

synchronized. A strong coupling between (ideally) separate modules is

undesirable because it makes extensibility difficult.

Unreal Networking Architecture

Unreal introduces into multiplayer gaming a new approach termed the

generalized client-server model. In this model, the server is still authoritative

over the evolution of the game state. However, the client actually maintains an

accurate subset of the game state locally, and can predict the game flow by

executing the same game code as the server, on approximately the same data,

thus minimizing the amount of data that must be exchanged between the two

machines. Servers send information about the world to clients by replicating

relevant actors and their replicated properties. Clients and servers also

communicate through replicated functions, which are replicated only between the

server and the client which owns the Actor on which the function is called.

Further, the game state is self-described by an extensible, object-oriented

scripting language - UnrealScript - which fully decouples the game logic from the

network code. The network code is generalized in such a way that it can

coordinate any game which can be described by the language. This achieves a

goal of object-orientation which increases extensibility, the concept that the

behavior of an object should be fully described by that object, without

introducing dependencies on other pieces of code which are hard-wired to know

about the internal implementation of that object.

Basic Concepts

Goal

The goal here is to define Unreal's networking architecture in a fairly rigorous

manner, because there is a fair amount of complexity involved that is easy to

misinterpret if not defined exactly.

Basic Terminology

We define our basic terminology precisely:

• A variable is an association between a fixed name and a modifiable value.

Examples of variables include integers such as X=123, floating point

numbers such as Y=3.14 , strings such as Team="Rangers" , and vectors

such as V=(1.5,2.5,-0.5) .

• An object is a self-contained data structure consisting of a fixed set of

variables.

• An actor is an object capable of independently moving around in a level

and interacting with other actors in that level.

• A level is an object which contains a set of actors.

• A tick is an operation that updates the entire game state given that a

variable amount of time called DeltaTime has passed.

• The game state of a level refers to the complete set of all actors that exist

in that level and the current values of all of their variables at a time when

a tick operation is not currently in progress.

• A client is a running instance of Unreal.exe which maintains an

approximate subset of the game state suitable for approximately

simulating the events that occur in the world, and for rendering an

approximate view of the world for a player.

• A server is a running instance of Unreal.exe which is responsible for

ticking a single level and communicating the game state authoritatively to

all of the clients.

The Update Loop

All of the above concepts are well-understood with the possible exception of the

tick and game state. So, these will be described in more detail. First of all, here

is a simple description of Unreal's update loop:

• If I am a server, communicate the current game state to all of my clients.

• If I am a client, send my requested movement to the server, receive new

game state information from the server, render my current approximate

view of the world to the screen.

• Perform a tick operation to update the game state, given that a variable

amount of time DeltaTime has passed since the previous tick.

A tick operation involves updating all of the Actors in the level, carrying out their

physics, informing them of interesting game events that have occurred, and

executing any necessary script code. Unlike many past games such as Doom and

Quake, all of the physics and update code in Unreal is designed to handle a

variable amount of time passing.

For example, _Doom_'s movement physics looks like:

 Position += PositionIncrement

while Unreal's looks like:

 Position += Velocity * DeltaTime

This enables greater frame rate scalability.

While a tick operation is in progress, the game state is being continually modified

by the code which executes. The game state can change in exactly three ways:

• A variable in an Actor can be modified.

• An Actor can be created.

• An Actor can be destroyed.

The Server Is The Man

From the above, the server's game state is completely and concisely defined by

the set of all variables of all actors within a level. Because the server is

authoritative about the gameplay flow, the server's game state can always be

regarded as the one true game state. The version of the game state on client

machines should always be regarded as an approximation subject to many

different kinds of deviations from the server's game state. Actors that exist on

the client machine should be considered proxies because they are a temporary,

approximate representation of an object rather than the object itself.

When a client loads a Level to use in a networked multiplayer game, it deletes all

Actors in the Level except those that have either bNoDelete set to TRUE or

bStatic set to TRUE. Other Actors relevant to that client (as determined by the

server) will be replicated from the server to the client. Some Actors (such as the

GameInfo Actor) are never replicated to a client.

Bandwidth Limitation

If network bandwidth were unlimited, the network code would be very simple: at

the end of each tick, the server could just send each client the complete and

exact game state so that the client always renders the exact view of the game as

is occurring on the server. However, the Internet reality is that 28.8K modems

have only perhaps 1% of the bandwidth necessary to communicate complete and

exact updates. While consumers' Internet connections will become faster in the

future, bandwidth is growing at a rate far lower than Moore's law which defines

the rate of improvement in games and graphics. Therefore, there is not now and

never will be sufficient bandwidth for complete game-state updates.

So, the main goal of the network code is to enable the server to communicate a

reasonable approximation of the game state to the clients so that the clients can

render an interactive view of the world which is as close to shared reality as is

reasonable given bandwidth limitations.

Replication

Unreal views the general problem of "coordinating a reasonable approximation of

a shared reality between the server and clients" as a problem of "replication".

That is, a problem of determining a set of data and commands that flow between

the client and server in order to achieve that approximate shared reality.

Actors

Roles

In general, every Actor has a Role and a RemoteRole property, which have

different values on the server and the client. Every Actor on a server has a Role

set to ROLE_Authority .

Actors on the server may have as their RemoteRole :

• ROLE_AutonomousProxy (PlayerControllers and the Pawn they control,

when replicated to the owning client)

• ROLE_SimulatedProxy (All other replicated Actors)

• ROLE_None (Actors which are never replicated to any client)

The RemoteRole of an Actor on the server is the Role of that Actor on the client.

All Actors replicated to a client have RemoteRole set to ROLE_Authority .

Definition

The Actor class defines the ENetRole enumeration and two variables, Role and

RemoteRole , as follows:

// Net variables.

enum ENetRole

{

 ROLE_None, // No role at all.

 ROLE_SimulatedProxy, // Locally simulated pro xy of this actor.

 ROLE_AutonomousProxy, // Locally autonomous pr oxy of this

actor.

 ROLE_Authority, // Authoritative control over the actor.

};

var ENetRole RemoteRole, Role;

The Role and RemoteRole variables describes how much control the local and

remote machines, respectively, have over the actor:

• Role==ROLE_SimulatedProxy means the actor is a temporary,

approximate proxy which should simulate physics and animation. On the

client, simulated proxies carry out their basic physics (linear or

gravitationally-influenced movement and collision), but they don't make

any high-level movement decisions. They just go. They can only execute

script functions with the simulated keyword; and they can only enter states

marked as simulated.

This situation is only seen in network clients, never for network servers or single-

player games.

• Role==ROLE_AutonomousProxy means the actor is the local player.

Autonomous proxies have special logic built in for client-side prediction

(rather than simulation) of movement. They can execute any script

functions on the client; and they can enter any state.

This situation is only seen in network clients, never for network servers or single-

player games.

• Role==ROLE_Authority means this machine has absolute, authoritative

control over the Actor.

This is the case for all actors in single-player games. They can execute any script

functions; and they can enter any state.

This is the case for all Actors on a server. On a client, this is the case for Actors

that were locally spawned by the client, such as gratuitous special effects which

are done client-side in order to reduce bandwidth usage. On the server side, all

Actors have Role==ROLE_Authority , and RemoteRole set to one of the proxy

types. On the client side, the Role and RemoteRole are always the exactly

reversed relative to the server's value. This is as expected from the meaning of

Role and RemoteRole .

Most of the meaning of the ENetRole values is defined by the replication

statements in the UnrealScript classes such as Actor and PlayerPawn . Here are

several examples of how the replication statements define the meanings of the

various role values:

• The Actor.AmbientSound variable is sent from the server to clients

because of this replication definition in the Actor class: if(

Role==ROLE_Authority) AmbientSound;

• The Actor.AnimSequence variable is sent from the server to clients, but

only for actors rendered as meshes, because of this replication definition in

the Actor class: if(DrawType==DT_Mesh &&

(RemoteRole<=ROLE_SimulatedProxy)) AnimSequence;

• The client replicates his Fire and AltFire function calls to the server

because of this replication definition in the PlayerPawn class: if(

Role<ROLE_Authority) Fire, AltFire;

• The server sends clients the Velocity of all simulated proxies when they

are initially spawned and all moving brushes because of this replication

definition in the Actor class: if((RemoteRole==ROLE_SimulatedProxy

&& (bNetInitial || bSimulatedPawn)) || bIsMover) V elocity;

By studying the replication statements in all of the UnrealScript classes, you can

understand the inner workings of all of the roles. There is really very little

"behind-the-scenes _magic_" going on with respect to replication: At a low C++

level, the engine provides a basic mechanism for replicating actors, function

calls, and variables. At the high UnrealScript level, the meanings of the various

network roles are defined by specifying what variables and functions should be

replicated based on the various roles. So, the meaning of the roles is almost self-

defining in UnrealScript, with the exception of a small amount of behind-the-

scenes C++ logic which conditionally updates physics and animation for

simulated proxies.

What Exactly Is Happening Behind The Scenes

The answer is for licensees to do a "Find in Files" in Visual C++ for all occurrences of ROLE_ in the

C++ and UnrealScript files. While documentation provides a general understanding of how network

roles are interpreted, the exact impact of roles on all aspects of the code can only be completely

described by the source code.

Relevancy

Definition

An Unreal Level can be huge, and at any time a player can only see a small

fraction of the Actors in that level. Most of the other Actors in the level aren't

visible, aren't audible, and have no significant effect on the player. The set of

Actors that a server deems are visible to or capable of affecting a client are

deemed the relevant set of Actors for that client. A significant bandwidth

optimization in Unreal's network code is that the server only tells clients about

Actors in that client's relevant set.

Unreal applies the following rules in determining the relevant set of Actors for a

player:

• If the Actor has bStatic=true or bNoDelete=true , then it is relevant.

• If the Actor belongs to the ZoneInfo class, then it is relevant.

• If the Actor is owned by the player (Owner==Player), then it is relevant.

• If the Actor is a Weapon and is owned by a visible actor, then it is relevant.

• If the Actor is hidden (bHidden=true) and it doesn't collide (

bBlockPlayers=false) and it doesn't have an ambient sound (

AmbientSound==None) then the actor is not relevant.

• If the Actor is visible according to a line-of-sight check between the actor's

Location and the player's Location , then it is relevant.

• If the Actor was visible less than 2 to 10 seconds ago (the exact number

varies because of some performance optimizations), then it is relevant.

• Actors whose RemoteRole!==ROLE_None are checked for relevancy for each

client.

o Virtual function AActor::IsNetRelevantFor() is called to determine

whether the Actor is relevant to that client.

o bAlwaysRelevant (relevant to all clients, always).

o bOnlyRelevantToOwner (used for Inventory).

o Relevancy based on visibility (using line checks).

o If skeletally attached, relevancy of base is used.

Note that bStatic and bNoDelete Actors (which remain on the client) can also

be replicated.

These rules are designed to give a good approximation of the set of Actors which

really can affect a player. Of course, it is imperfect: the line-of-sight check can

sometimes give a false negative with large Actors (though we use some

heuristics to help it out), it doesn't account for sound occlusion of ambient

sounds, and so on. However, the approximation is such that its error is

overwhelmed by the error inherent in a network environment with such latency

and packet loss characteristics as the Internet.

Changing the definition of the relevant set in C++

The set of relevant Actors for a client is determined by the C++ function

UWorld::ServerTickClients from UnLevTic.cpp . Licensees who want to

implement different gameplay rules are free to modify the definition of the

relevant set by modifying UWorld::ServerTickClients or (better yet)

subclassing UWorld , and overriding the function.

Prioritization

In deathmatch games on modem-based Internet connections, there is almost

never enough bandwidth available for the server to tell each client everything it

desires to know about the game state, Unreal uses a load-balancing technique

that prioritizes all actors, and gives each one a fair share of the bandwidth based

on how important it is to gameplay.

Each Actor has a floating point variable called NetPriority . The higher the

number, the more bandwidth that Actor receives relative to others. An Actor with

a priority of 2.0 will be updated exactly twice as frequently as an Actor with

priority 1.0. The only thing that matters with priorities is their ratio; so obviously

you can't improve Unreal's network performance by increasing all of the

priorities. Some of the values of NetPriority we have assigned in our

performance-tuning are:

• Actor = 1.0

• Pawns = 2.0

• PlayerController = 3.0

• Projectiles = 2.5

• Inventory = 1.4

• Vehicule = 3.0

To avoid starvation AActor::GetNetPriority() multiplies NetPriority with the

time since the Actor was last replicated. APawn::GetNetPriority() also

considers replicated location error, and whether the Pawn is behind the viewer.

Replication

Replication Overview

The network code is based on three primitive, low-level replication operations for

communicating information about the game state between the the server and

clients:

1. Actor replication

2. Variable replication

3. Function replication

Actor replication. The server identifies the set of "relevant" Actors for each

client (Actors which are either visible to the client or are likely to somehow affect

the client's view or movement instantaneously), and tells the client to create and

maintain a "replicated" copy of that Actor. While the server always has the

authoritative version of that Actor, at any time many clients might have

approximate, replicated versions of that Actor.

When a replicated Actor is spawned on a client, only Location and Rotation

(valid if bNetInitialRotation is set to TRUE) are valid during PreBeginPlay()

and PostBeginPlay() . Replicated Actors can only be destroyed because the

server closes their replication channel, with the exception being if the Actor

properties bNetTemporary and bTearOff have been set to TRUE.

Actor property replication is reliable. This means that the property of the client

version of the Actor will eventually reflect the value on the server, not that all

property value changes will be replicated. In any case, Actor properties are only

replicated from the server to the client; and such properties are replicated only if

they are included in the replication definition of the Actor class which defines that

property.

The replication definition specifies replication conditions, which describe when

and if to replicate a given property to the client currently being considered. Even

if an Actor is relevant, not all of its properties are replicated. Careful specification

of replication conditions can substantially reduce bandwidth use.

There are three Actor properties which are only valid during replication, and

change values depending on the client for which the server is determining

replication:

1. bNetDirty is true if any replicated properties have been changed by

UnrealScript (or this flag has been set in C++). This is used as an

optimization (no need to check UnrealScript replication conditions, or to

check whether properties which are only modified in script have been

changed if bNetDirty is false). Don’t use bNetDirty to manage replication

of frequently updated properties!

2. bNetInitial remains true until initial replication of all replicated Actor

properties is complete.

3. bNetOwner is true if the top owner of the Actor is the PlayerController

owned by the current client.

Variable replication. Actor variables that describe aspects of the game state

which are important to clients can be "replicated". That is, whenever the value of

the variable changes on the server side, the server sends the client the updated

value. (The variable may have changed on client side too - in which case the new

value will overwrite it.)

Function call replication. A function that is called on the server in a network

game can be routed to the remote client rather than executed locally.

Alternatively, a function called on the client side may be routed to the server,

rather than called locally. To give a concrete example, consider the case where

you are a client in a network game. You see two opponents running toward you,

shooting at you, and you hear their shots. Since all of the game state is being

maintained on the server rather than on your machine, why can you see and

hear those things happening?

• You can see the opponents because the server has recognized that the

opponents are relevant to you (i.e. they are visible) and the server is

currently replicating those Actors to you. Thus, you (the client) have a local

copy of those two player Actors who are running after you.

• You can see that the opponents are running toward you because the server

is replicating their Location variable to you.

• You can see them animating because the server is replicating their

animation variables to you. In other words, the server is continually

feeding you new values of their Location and animation parameters, at the

rate of several times per second.

• You can hear their gunshots because the server is replicating the

ClientHearSound function to you. The ClientHearSound function is called

for a PlayerPawn whenever that PlayerPawn hears a sound.

So, by this point, the low-level mechanisms by which Unreal multiplayer games

operate should be clear. The server is updating the game state and making all of

the big game decisions. The server is replicating some Actors to clients. The

server is replicating some variables to clients. And, the server is replicating some

function calls to clients.

It should also be clear that not all Actors need to be replicated. For example, if

an Actor is halfway across the level and way out of your sight, you don't need to

waste bandwidth sending updates about it. Also, all variables don't need to be

updated. For example, the variables that the server uses to make AI decisions

don't need to be sent to clients; the clients only need to know about their display

variables, animation variables, and physics variables. Also, most functions

executed on the server shouldn't be replicated. Only the function calls that result

in the client seeing or hearing something need to be replicated. So, in all, the

server contains a huge amount of data, and only a small fraction of it matters to

the client--the ones which affect things the player sees, hears, or feels.

Thus, the logical question is, "How does the Unreal engine know what Actors,

variables, and function calls need to replicated?"

The answer is, the programmer who writes a script for an actor is responsible for

determining what variables and functions, in that script, need to be replicated.

And, he is responsible for writing a little piece of code called a "replication

statement", in that script, to tell the Unreal engine what needs to be replicated

under what conditions. For a real-world example, consider some of the things

defined in the Actor class.

• The Location variable (a vector) contains the Actor's location. The server

is responsible for maintaining the location, so the server needs to send that

to clients. So the replication condition basically says "Replicate this if I am

the server".

• The Mesh variable (an object reference) references the mesh that should

be rendered for the actor. The server needs to send that to clients, but it

only needs to be sent if the Actor is being rendered as a mesh, i.e. if the

Actor's DrawType is DT_Mesh . So the replication condition basically says

"Replicate this if I am the server and the DrawType is DT_Mesh ".

• In the PlayerPawn class, there are a bunch of boolean variables that define

keypresses and button presses, such as bFire and bJump. These are

generated on the client side (where the input happens), and the server

needs to know about them. So the replication condition basically says

"Replicate this if I am a client".

• In the PlayerController class, there is a ClientHearSound function that

tells the player that he or she hears a sound. It's called on the server but,

of course the sound needs be heard by the actual person playing the

game, who is on the client side. So the replication condition for this

function might be "Replicate this if I am the server".

From the above examples, several things should be apparent. First of all, every

variable and function that might be replicated needs to have a "replication

condition" attached to it, that is, an expression which evaluates to True of False,

depending on whether the thing needs to be replicated. Second, these replication

conditions need to be two-way: the server needs to be able to replicate variables

and functions to the client, and the client needs to be able to replicate them to

the server. Third, these "replication conditions" can be complex, such as

"Replicate this if I'm the server and this is the first time this Actor is being

replicated across the network."

Therefore, we need a general-purpose way of expressing (complex) conditions

under which variables and functions should be replicated. What is the best way

to express these conditions? We looked at all of the options, and concluded that

UnrealScript--which is already a very powerful language for authoring classes,

variables, and code--would be a perfect tool for writing replication conditions.

UnrealScript: the Replication Statement

In UnrealScript, every class can have one replication statement. The replication

statement contains one or more replication definitions. Each replication definition

consist of a replication condition (a statement that evaluates to True or False),

and a list of one or more functions and variables to which the condition applies.

The replication statement in a class may only refer to variables defined in that

class, and functions defined first in that class (that is, it cannot apply to functions

defined in a superclass but overridden in that class). This way, if the Actor class

contains a variable DrawType , then you know where to look for its replication

condition: it can only reside there in the Actor class.

It's valid for a class to not contain a replication statement; this simply means

that the class doesn't define any new variables or functions that need to be

replicated. In fact, most classes do not need replication statements because

most of the "interesting" variables that affect display are defined in the Actor

class, and are only modified by subclasses. In Unreal, we have about 500

classes, and only about 10 of them need replication statements.

If you define a new variable or function in a class, but you don't list it in a

replication definition, that means that your variable or function is absolutely

never replicated. This is the norm; most variables and functions don't need to be

replicated.

Here is an example of the UnrealScript syntax for the replication statement. This

is taken from the PlayerReplicationInfo class:

replication

{

 // Things the server should send to the client.

 if (bNetDirty && (Role == Role_Authority))

 Score, Deaths, bHasFlag, PlayerLocationHint,

 PlayerName, Team, TeamID, bIsFemale, bAdmin,

 bIsSpectator, bOnlySpectator, bWaitingPlayer, bReadyToPlay,

 StartTime, bOutOfLives, UniqueId;

 if (bNetDirty && (Role == Role_Authority) && !b NetOwner)

 PacketLoss, Ping;

 if (bNetInitial && (Role == Role_Authority))

 PlayerID, bBot;

}

The key things you see here are:

• The replication statement is enclosed by a replication {} block.

Reliable vs. Unreliable

Functions replicated with the unreliable keyword are not guaranteed to reach

the other party and, if they do reach the other party, they may be received out-

of-order. The only things which can prevent an unreliable function from being

received are network packet-loss, and bandwidth saturation. So, you need to

understand the odds, which we will grossly approximate here. The results vary

wildly among different types of network, so we can make no guarantees:

LAN In a LAN game, we guesstimate that unreliable data is received successfully

approximately 99% of the time. However, in the course of a game, hundreds of

thousands of things are replicated, so you can be sure that some unreliable data

will be lost. Therefore, even if you're aiming for LAN performance only, your code

needs to handle your unreliably replicated variables gracefully in the case that

they are lost over the wire.

Internet In a typical low quality 28.8K ISP connection, unreliable data is

generally received 90%-95% of the time. In other words, it is very frequently

lost.

To get a better feeling for the tradeoffs between reliable and unreliable functions,

check out the replication statements in the Unreal scripts, and gauge their

importance vs. the reliability decision we made. Be cautious and use reliable

functions only when absoluately necessary.

Variables are always reliable

The reliable and unreliable keywords are ignored for variables. Variables are

always guaranteed to reach the other party eventually, even under packet-loss

and bandwidth saturation conditions. Changes in such variables are not

guaranteed to reach the other party in the same order in which they were sent.

Summary

Here, we have documented the syntax of the replication statement thoroughly,

without saying much about the meaning of the expressions like

Role==ROLE_Authority and bNetOwner . This is covered in the next section.

Replication Conditions

Here is a simple example of a replication condition within a class's script:

replication

{

 if(Role==ROLE_Authority)

 Weapon;

}

This replication condition, translated into English, is "If the value of this Actor's

Role variable is equal to ROLE_Authority , then this Actor's Weapon variable

should be replicated to all clients for whom this Actor is relevant".

A replication condition may be any expression that evaluates to a value of True

or False (that is, a boolean expression). So, any expression you can write in

UnrealScript will do, including comparing variables; calling functions; and

combining conditions using the boolean ! , &&, || , and ^^ operators.

An Actor's Role variable generally describes how much control the local machine

has over the Actor. ROLE_Authority means "this machine is the server, so it is

completely authoritative over the proxy Actor". ROLE_SimulatedProxy means

"this machine is a client, and it should simulate (predict) the physics of the

Actor". Role is described in more detail in a later section, but the quick summary

is this:

• if(Role==ROLE_Authority) : means "If I am the server, I should replicate

this to clients".

• if(Role<ROLE_Authority) : means "If I am a client, I should replicate this

to the server".

The following variables are very often used in replication statements because of

their high utility:

• bIsPlayer : Whether this Actor is a player. True for players, False for all

other Actors.

• bNetOwner : Whether this Actor is owned by the client for whom the

replication condition is being evaluated. For example, say "Fred" is holding

a DispersionPistol , and "Bob" isn't holding any weapon. When the

DispersionPistol is being replicated to "Fred", its bNetOwner variable will

be True (because "Fred" owns the weapon). When it is being replicated to

"Bob", its bNetOwner variable will be False (because "Bob" does not own

the weapon).

• bNetInitial : Valid only on the server side (i.e. if

Role==ROLE_Authority). Indicates whether this Actor is being replicated

to the client for the first time. This is useful for clients with

Role==ROLE_SimulatedProxy , because it enables the server to sent their

location and velocity just once, with the client subsequently predicting it.

Replication condition guidelines:

Since variables are typically replicated one-way (either from the client to the

server, or from the server to the client, but never both), all replication conditions

generally start with a comparison of Role or RemoteRole : for example,

if(Role==ROLE_Authority) or if(RemoteRole<ROLE_SimulatedProxy) . If a

replication condition doesn't contain a comparison of Role or RemoteRole , there

is probably something wrong with it.

Replication conditions are evaluated very, very frequently on the server during

network play. Keep them as simple as possible, but no simpler.

While replication conditions are allowed to call functions, try to avoid that

because it could be a big slowdown.

Replication conditions shouldn't have any side-effects, because the network code

may choose to call them at any time including times when you don't expect. For

example if you do something like if(Counter++ > 10) ..., good luck trying to

figure out what is going to happen!

Variable Replication

Update mechanism

After every tick, the server checks out all Actors in its relevant set. All of their

replicated variables are examined to see if they have changed since the previous

update, and the variables' replication conditions are evaluated to see if the

variables need to be sent. As long as there is bandwidth available in the

connection, those variables are sent across the network to the other machine.

Thus, the client receives updates of the important events that are happening in

the world, which are visible or audible to that client. The key points to remember

about variable replication are:

Variable replication occurs only after a tick completes. Therefore, if in the

duration of a tick, a variable changes to a new value, and then it changes back to

its original value, then that variable will not be replicated. Thus, clients only hear

about the state of the server's Actor's variables after its tick completes; the state

of the variables during the tick is invisible to the client.

Variables are only replicated when they change, relative to their previously

known value.

Variables for an Actor are only replicated to a client when they are in the client's

relevant set. Thus, the client does not have accurate variables for Actors that are

not in its relevant set.

UnrealScript has no concept of global variables; so they only variables that can

be replicated are instance variables belonging to an Actor.

Variable type notes:

• Vectors and Rotators: To improve bandwidth efficiency, Unreal quantizes

the values of vectors and rotators. The X, Y, Z components of vectors are

converted to 16-bit signed integers before being sent, thus any fractional

values or values out of the range -32768...32767 are lost. The Pitch , Yaw,

Roll components of vectors are converted to bytes, of the form

(Pitch>>8)&255 . So, you need to be careful with vectors and rotators. If

you absolutely must have full precision, then use int or float variables for

the individual components; all other data types are sent with their

complete precision.

General structs are replicated by sending all of their components. A struct is sent

as an "all or nothing" type of thing.

• Arrays of variables can be replicated, but only of the size of the array (in

bytes) is less than 448 bytes.

• Arrays are replicated efficiently; if a single element of a large array

changes, only that element is sent.

Actor Properties

Actor property replication is reliable. This means that the property of the client

version of the Actor will eventually reflect the value on the server, not that all

property value changes will be replicated.

• Properties are only replicated from the server to the client.

• Properties are replicated only if they are included in the replication

definition of the class which defines that property.

Function Call Replication

Remote Routing Mechanism

When an UnrealScript function is called during a network game, and that function

has a replication condition, the condition is evaluated and execution progresses

as follows:

• If the function's replication condition evaluates to True , the function call is

sent to the machine on the other side of the network connection for

execution. In other words, the function's name, and all of its parameters,

are crammed together into a packet of data, and transmitted to the other

machine for later execution. When this occurs, the function returns

immediately and execution continues on. If the function were declared to

return a value, then its return value is set to zero (or the equivalent of

zero in some other type, i.e. 0,0,0 for vectors, None for objects, etc). Any

out parameters are left unaffected. In other words, UnrealScript never sits

around waiting for a replicated function call to complete, so it can never

deadlock. Rather, replicated function calls are sent off for the remote

machine to execute, and the local code continues executing.

• If the replication condition evaluates to False , the function is executed

normally on the local machine.

Unlike replicated variables, a function call on an Actor can only be replicated

from the server to the client (player) who owns that Actor. So, replicated

functions are only useful in subclasses of PlayerController (i.e. players, who

own themselves), Pawn (i.e. player avatars that are owned by a Controller that is

controlling them), and subclasses of Inventory (i.e. weapons and pickup items,

who are owned by the player who is currently carrying them). That is to say, a

function call can only be replicated to one Actor (the player who owns it); they

cannot be multicast.

If a function marked with the server keyword is called on a client, it will be

replicated to the server. Conversely, when a function marked with the client

keyword is called on the server, it will be replicated to the client which owns that

Actor.

Unlike replicated variables, replicated function calls are sent to the remote

machine immediately when they are called, and they are always replicated

regardless of bandwidth. Thus, it is possible to flood the available bandwidth if

you make too many replicated function calls. Replicated functions suck away

however much bandwidth is available, and then whatever bandwidth is left over

is used for replicating variables. Therefore, if you flood the connection with

replicated functions, you can starve the replication of variables, which visually

results in not seeing other Actors update, or seeing them update in an extremely

choppy motion.

In UnrealScript, there are no global functions, so there is no concept of

"replicated global functions". A function is always called in the context of a

particular Actor.

Replicated Function Calls vs. Replicated Variables

Too many replicated functions can flood the available bandwidth (because the

are always replicated, regardless of available bandwidth), whereas replicated

variables automatically are throttled and parceled out according to bandwidth

available.

Function calls are replicated only during UnrealScript execution when they are

actually called, whereas variables are replicated only at the end of the current

tick when no script code is executing.

Function calls on an actor are only replicated to the client who owns that actor,

whereas an Actor's variables are replicated to all clients for whom that actor is

relevant.

Quantization Gotchas

To improve bandwidth efficiency, Unreal quantizes the values of vectors and

rotators. The X, Y, Z components of vectors are converted to integers before

being sent, thus any fractional values are lost. The Pitch , Yaw, Roll components

of vectors are converted to bytes, of the form (Pitch>>8)&255 . If you need

complete accuracy on rotators and vectors, send them as individual float or int

components.

Replication Patterns

The goals for common replication patterns in the Unreal Engine and games

shipped by Epic are:

• Minimizing Server CPU utilization

• Minimizing Bandwidth use

• Minimizing perceived latency

Minimizing Server CPU Utilization

Minimize cost of replicating actors (Effectively, optimize execution of

=UWorld::ServerTickClients=())

• Minimize number of potentially replicated Actors (those with RemoteRole =

ROLE_None).

• Minimize number of Actors that need to be checked for relevancy per client

any given tick.

• Minimize number of actually relevant Actors per client any given tick.

• Minimize number of replicated properties that need to be checked per

replicated actor per client any given tick.

• Avoid unnecessarily setting bNetDirty .

Minimize Actor tick cost

• Avoid spawning Actors not needed on server (particle effects, etc.).

• Avoid executing code if it has no game play relevance.

Minimize cost of processing received replicated functions

• Minimize number of functions received and processing required.

As the number of players increases, the cost of replicating Actors becomes the

dominant part of server execution time, since it tends to increase geometrically

rather than linearly with the number of players (since the number of potentially

replicated Actors tends to be proportional to the number of players).

Minimizing Bandwidth Use

Minimize the following factors:

• the number of relevant Actors per client

• the frequency of property updates

• the number of packets sent

Unsuppress DevNetTraffic to see logging of all replicated Actors and properties.

The console command Stat Net is also useful.

Minimizing Perceived Latency

Have client predict behavior of client owned actors based on player inputs;

simulate this behavior before receiving confirmation from the server (and

correcting if necessary). We use this model for Pawn movement and Weapon

handling, but not for Vehicles, as the complexity of saving and replaying the

physics simulation outweighs the benefit of reduced latency for vehicles

handling, where typical internet response latencies aren’t that different from

typical real world vehicle control response latencies.

Simulated Functions and States

On the client side, many Actors exist in the form of "proxies", meaning

approximate copies of Actors created by the server, and sent to the client to

provide a visually and aurally reasonable approximation of what the client sees

during gameplay.

On the client, these proxy Actors are often moving around using client-side

physics and affecting the environment, so at any time their functions can

potentially be called. For example, a simulated proxy TarydiumShard projectile

might run into a dumb proxy Tree Actor. When Actors collide, the engine

attempts to call their Touch functions to notify them of the collision. Depending

on context, the client desires to execute some of these functions calls, but ignore

others. For example, a Skaarj='s =Bump function should not be called on the

client side, because his Bump function attempts to carry out gameplay logic, and

gameplay logic should only occur on the server. So, the Skaarj='s =Bump

function should not be called. However, a TarydiumShard projectile's Bump

function should be called, because it stops the physics and spawns a client-side

special effect Actor.

UnrealScript functions can optionally be declared with the simulated keyword to

give programmers fine-grained control over which functions should be executed

on proxy actors. For proxy actors (that is, actors with Role<ROLE_Authority),

only functions declared with the simulated keyword are called. All other functions

are skipped.

Here is an example of a typical simulated function:

simulated function HitWall(vector HitNormal, actor Wall)

{

 SetPhysics(PHYS_None);

 MakeNoise(0.3);

 PlaySound(ImpactSound);

 PlayAnim('Hit');

}

So, simulated means "this function should always be executed for proxy Actors".

NOTE: Make sure that subclass implementations of simulated functions also

have the simulated keyword in their definition!

Simulated states are similar to simulated functions.

Gameplay

Below are some gameplay considerations regarding Infos, Players, Weapons, etc.

ReplicationInfo classes

ReplicationInfo classes have bAlwaysRelevant set to TRUE. Server performance

can be improved by setting a low NetUpdateFrequency . Whenever a replicated

property changes, explicitly change NetUpdateTime to force replication. Server

performance can also be improved by setting bSkipActorPropertyReplication

and bOnlyDirtyReplication to TRUE (if no C++ updated properties).

See: PlayerReplicationInfo , GameReplicationInfo .

The WorldInfo class

Every game world instance in a networked game has a NetMode. The WorldInfo

class defines the ENetMode enumeration and an associated NetMode variable as

follows:

var enum ENetMode

{

 NM_Standalone, // Standalone game.

 NM_DedicatedServer, // Dedicated server, no lo cal client.

 NM_ListenServer, // Listen server.

 NM_Client // Client only, no local s erver.

} NetMode;

The NetMode property is often used to control what code will execute on different

game instance types.

The GameInfo class

The UnrealScript GameInfo class implements the game rules. A server (both

dedicated and single-player) has one GameInfo subclass, accessible in

UnrealScript as Level.Game . For each game type in Unreal, there is a special

GameInfo subclass. For example, some existing classes are DeathmatchGame ,

SinglePlayer , TeamGame.

A client in a network game does not have a GameInfo . That is,

Level.Game==None on the client side. Clients should not be expected to have a

GameInfo because the server implements all of the gameplay rules, and the

generality of the code calls for the client not knowing what the game rules are.

GameInfo implements a broad set of functionality, such as recognizing players

coming and going, assigning credit for kills, determining whether weapons should

respawn, and so on. Here, we will only look at the GameInfo functions which are

directly related to network programming.

InitGame

event InitGame(string Options, out string ErrorMes sage);

Called when the server (either in network play or single-player) is first started

up. This gives the server the opportunity to parse the startup URL options. For

example, if the server was started with "Unreal.exe

MyLevel.unr?game=unreali.teamgame", the Options string is

"?game=unreali.teamgame" . If Error is set to a non-empty string, the game

fails with a critical error.

PreLogin

event PreLogin(string Options, string Address, out string

ErrorMessage, out string FailCode);

Called immediately before a network client is logged in. This gives the server an

opportunity to reject the player. This is where the server should validate the

player's password (if any), enforce the player limit, and so on.

Login

event PlayerController Login(string Portal, string Options, out

string ErrorMessage);

The Login function is always called after a call to PreLogin which does not

return an error string. It is responsible for spawning the player, using the

parameters in the Options string. If successful, it should return the PlayerPawn

Actor it spawned.

If the Login function returns None indicating that the login failed, then it should

set Error to a string describing the error. Failing a Login should be used only as

a last resort. If you are going to fail a login, it is more efficient to fail it in

PreLogin rather than Login .

PostLogin

event PostLogin(PlayerController NewPlayer);

The PostLogin function is called after a successful login. This is the first point at

which replicated functions can be called.

Player Movement and Prediction

Overview

If a pure client-server model were used in Unreal, player movement would be

very laggy. On a connection with 300 msec ping, when you push the forward

key, you wouldn't see yourself move for 300 msec. When you pushed the mouse

left, you wouldn't see yourself turn for 300 msec. This would be really

frustrating.

To eliminate client-movement lag, Unreal uses a prediction scheme similar to

that pioneered by QuakeWorld. It must be mentioned that the player prediction

scheme is implemented entirely in UnrealScript. It is a high-level feature

implemented in the PlayerPawn class, rather than a feature of the network code:

Unreal's client movement prediction is layered entirely on the general-purpose

replication features of the network code.

Inner Workings

You can see exactly how Unreal's player prediction works by examining the

PlayerPawn script. Since the code is somewhat complex, its workings are briefly

described here.

The approach can best be described as a lock-step predictor/corrector algorithm.

The client takes his input (joystick, mouse, keyboard) and physical forces

(gravity, buoyancy, zone velocity) into account and describes his movement as a

3D acceleration vector. The client sends this acceleration along with various input

related information and his current timestamp (the current value of

Level.TimeSeconds on the client side) to the server in a replicated ServerMove

function call:

server function ServerMove

(

 float TimeStamp,

 vector InAccel,

 vector ClientLoc,

 byte MoveFlags,

 byte ClientRoll,

 int View

)

Then the client calls his MoveAutonomous to perform this same identical

movement locally, and he stores this movement in a linked list of remembered

movements using the SavedMove class. As you can see, if the client never heard

anything back from the server, the client would be able to move around with

zero lag just as in a single-player game.

When the server receives a ServerMove function call (replicated across the

network), the server carries out the exact same movement on the server

immediately. It deduces the movement's DeltaTime from the current

ServerMove='s =TimeStamp and the previous one's. In this way, the server is

carrying out the same basic movement logic as the client. However, the server

might see things slightly different than the client. For example, if there's a

monster running around, the client might have thought it was in a different

position than the server (because the client is only in rough approximate sync

with the server). Thus, the client and the server might disagree about how far

the client actually moved as a result of the ServerMove call. At any rate, the

server is authoritative, and he is completely responsible for determining the

client's position. Once the server has processed the client's ServerMove call, it

calls the client's ClientAdjustPosition function which is replicated across the

network to the client:

client function ClientAdjustPosition

(

 float TimeStamp,

 name newState,

 EPhysics newPhysics,

 float NewLocX,

 float NewLocY,

 float NewLocZ,

 float NewVelX,

 float NewVelY,

 float NewVelZ,

 Actor NewBase

)

Now, when the client receives a ClientAdjustPosition call, he must respect

the server's authority over his position. So, the client sets his exact location and

velocity to that specified by the ClientAdjustPosition call. However, the

position the server specifies in ClientAdjustPosition reflects the client's actual

position at some time in the past. But, the client wants to predict where he is

supposed to be at the present moment. So, now the client goes through all of

the SavedMove='s in his linked list. All moves earlier than the

=ClientAdjustPosition call's TimeStamp are discarded. All moves that occurred

after TimeStamp are then re-run by looping through them and calling

MoveAutonomous for each one.

This way, at any point in time, the client is always predicting ahead of what the

server has told him by an amount of time equal to half his ping time. And, his

local movement is not at all lagged.

Advantages

This approach is purely predictive, and it gives one the best of both worlds: In all

cases, the server remains completely authoritative. Nearly all the time, the client

movement simulation exactly mirrors the client movement carried out by the

server, so the client's position is seldom corrected. Only in the rare case, such as

a player getting hit by a rocket, or bumping into an enemy, will the client's

location need to be corrected.

Movement Pattern

The following diagrams help illustrate the movement pattern on the server and

client, including error adjustment.

Player State Synchronization

The PlayerController code assumes that the client and server always try to run

the exact same state; ClientAdjustPosition() includes the state so that the client

can be updated if it has entered a different state. In those cases where the

server needs to change states but the client cannot simulate that state change

itself, ClientGotoState() is used to force it into that state immediately. There is

no support for handling/synchronizing UnrealScript's state stack functionality

(PushState()/PopState() and we recommend not using it for PlayerControllers.

Player Animation (Client-Side)

If animation has no gameplay relevance (i.e. in a fighting game), it doesn’t need

to be executed on the server at all. This can be controlled by

SkeletalMeshComponent's bUpdateSkelWhenNotRendered and

bIgnoreControllersWhenNotRendered properties, as well as on a per-skeletal

controller basis with SkelControlBase::bIgnoreWhenNotRendered. Client-side

animation is driven by the inspection of Pawn state (physics, Pawn properties).

For animation-driven movement, the root bone motion is converted into

acceleration/velocity, and that is what is being replicated. So the animation

remains locked in place (relative to the Actor), and the root bone motion is

transferred into acceleration/velocity moving the actor instead.

This is not heavier for the server/client than non root motion movement.

Dead Bodies

If bTearoff is true, this Actor is no longer replicated to new clients, and is torn

off (becomes a ROLE_Authority) on clients to which it was being replicated. The

TornOff() event is called when bTearOff is received. The default

implementation calls PlayDying() on the dying Pawn.

Weapon Firing

Weapon firing is similar to the pattern for Player movement:

• Client plays firing effect (sound, animation, muzzleflash) immediately on

player input requesting fire, and calls ServerStartFire() and

ServerStopFire() to request server firing.

o Client has enough state information (ammo count, weapon timing

state etc.) to correctly predict whether weapon can be fired, except

in rare cases where client and server version of the relevant

properties aren’t synchronized.

• The Server spawns projectiles/damage the weapon (spawn the projectile).

Projectiles

This example is useful for simple, predictable projectiles:

• bNetTemporary = TRUE

o After initial replication, Actor channel is closed and Actor is never

updated again. Actor will be destroyed by client.

o Saves bandwidth, as well as server property replication tests.

• bReplicateInstigator = TRUE

o So projectiles can interact properly with instigator.

• Client-side effect spawning

o Note that Actors spawned on client have ROLE_Authority on the

client, do not exist on server or any other client.

o These effects don’t need to be spawned on the server at all; nor

replicated.

Drawback: May erroneously hit or miss target if client simulation of target and/or

projectile is off. Don’t use for one shot kill type projectiles for this reason.

Weapon Attachments

Avoid having interrelated groups of Actors all replicated, both because of

performance and to minimize synchronization issues.

In Unreal Tournament, Weapons are only replicated to the owning client.

Weapon Attachments are not replicated, but spawned clientside and controlled

through some replicated Pawn properties. Pawns replicate FlashCount and

FiringMode , and UT Pawns replicate CurrentWeaponAttachmentClass . The

ViewPitch property in Pawn is another example of this pattern in use.

Sounds

The function ClientHearSound() is called on every PlayerController for which

the sound is audible. The function ClientCreateAudioComponent() is called on

the Actor responsible for the sound. If the Actor doesn’t exist on the client, the

sound will be played at the replicated position, with the audio component created

by WorldInfo . The function ClientPlaySound() in PlayerController plays non-

positional sound on client.

Try to play sounds on the client whenever possible!

Physics

Replication

Physics simulation is run on both the client and the server. Updates are sent to

the client from the server.

The following struct is used to describe the physical state of a rigid body, and is

replicated (as defined in Actor):

struct RigidBodyState

{

 var vector Position;

 var Quat Quaternion;

 var vector LinVel; // RBSTATE_LINVELSCALE time s actual

(precision reasons)

 var vector AngVel; // RBSTATE_ANGVELSCALE time s actual

(precision reasons)

 var int bNewData;

};

A struct used so that all properties change at the same time. The vectors are

compressed to integer resolution, so that they are scaled before sending. Quats

are compressed to only send 3 values; the 4th value is inferred from the other 3.

For Physics Replication, there are two types of correction:

• Small corrections and object moving: 20% position adjust, 80% additional

velocity to target

• Large correction or object stopped: 100% position adjust

Simulation

The following scenarios describe physics simulation:

• ROLE_SimulatedProxy Actor simulation

o The client continuously updates the simulated actor position based

on the received position and velocity.

o If bUpdateSimulatedPosition is true, authoritative position updates

are continuously sent from the server to the client (otherwise, no

position updates are sent after the initial replication of the Actor).

• Pawns on other clients

o Unlike other Actors, simulated Pawns do not execute normal physics

functions on the client. This means that physics events, like the

Landed() event, are never called for pawns on non-owning clients.

o The physics mode of the Pawn is inferred from its position, and the

bSimulateGravity flag, and its predicted position is updated based

on the replicated velocity.

� The bSimGravityDisabled flag is set, temporarily turning off

gravity simulation, if Pawn didn’t fit at the replicated position,

and is in danger of falling through the world on the client.

o Pawns by default set bReplicatePredictedVelocity flag to true and

implement AActor::ExtrapolateVelocity() , which is used to

calculate an average velocity to send to clients for simulating

movement, taking current acceleration into account. Current

implementation improves pawns stopping without a noticeable

correction.

• PHYS_RigidBody Actors (Vehicles, KActors, etc.)

o Both client and server simulate the objects, but the server sends

authoritative updates to the client periodically (when the object is

awake). The client then moves the object to match the server

version using the code in AActor::ApplyNewRBState()

� Attempts to do so smoothly, by altering velocity to bring about

convergence in positions rather than snapping the position if

the error is below an acceptable threshold

o Use RigidBodyState struct for atomic replication, when all

properties must be received in synch.

For Ragdoll physics, only the hip location is replicated. It is often possible to tear

off completely and not replicate at all.

For Vehicles (PHYS_RigidBody Actors), there is the following network flow:

1. Press key on client

2. Send inputs (throttle, sterring, rise) to server - replicated function
ServerDrive called

3. Generate ouptut (OutputBrake, OutputGas, etc.); pack into replicated

structs that can be sent to the client - function ProcessCarInput called on

server

4. Update vehicle on server and client; use outputs (OutputBrake, OutputGas,

etc.) to apply forces/torques to wheels/vehicle - function UpdateVehicle

called on client and server

Bandwidth Performance Tips

Optimization goal

The goal here is to maximize the amount of visibly important detail that is sent

with a given bandwidth limit. With the bandwidth limit determined at runtime,

your goal in writing scripts for Actors that are used in multiplayer games is to

keep bandwidth use to a minimum. The techniques we use in our scripts include:

Use ROLE_SimulatedProxy and simulated movement whenever possible. For

example, nearly all of the Unreal projectiles use ROLE_SimulatedProxy . The one

exception is the Razorjack alt-fire blades, which the player can steer during

gameplay, thus the server must continually update the position to clients.

For quick special effects, spawn the special effects Actors purely on the client

side. For example, many of our projectiles use a simulated HitWall function to

spawn their effects on the client-side. Since these special effects are just

decorative rather than affecting gameplay, there is no drawback to doing them

completely on the client side.

Execute code based on received property changes via PreNetReceive() and

PostNetReceive() . This is required for updates of Actor properties that shouldn’t

be directly modified (Location , DrawScale , Collision). The advantage is C++

performance for frequently replicated properties. In addition, the old value is

known, so you can check against it. When properties marked with the Repnotify

keyword are replicated, the UnrealScript ReplicatedEvent() event is called with

the name of the modified property as a parameter.

Fine tune the default NetPriority for each class. Projectiles and players need to

have high priorities, purely decorative effects can have lower priorities. The

defaults that Unreal provides are good first-pass guesses, but you can always

gain some improvement by fine-tuning them. When an actor is first replicated to

a client, all of its variables are initialized to their class default values.

Subsequently, only variables that differ from their most recent known values are

replicated. Thus, you should design your classes so that as many variables as

possible are automatically set to their class defaults. For example, if an Actor

always should have a LightBrightness value of 123, there are two ways you

can make that happen: (1) set the class default's value of LightBrightness to

123, or (2) in the Actor's BeginPlay function, initialize LightBrightness to 123.

The first approach is more efficient, because the LightBrightness value will

never need to be replicated. With the second approach, the LightBrightness

needs to be replicated each time an Actor first becomes relevant to the client.

Also be aware of the following situations:

• bNetInitial and bNetDirty don’t get cleared if the Actor reference can’t

be serialized. See native replication code for replicating Base, Controller,

and Instigator.

• Avoid replicating arrays.

• Some properties (Vectors and Rotations) are truncated for replication.

Native (C++)

Use Native Replication

• NativeReplication keyword for the class definition.

• Implement your class' version of AActor::GetOptimizedRepList() .

• Still need script Replication{} definition to generate RepIndex for each

replicated property.

• In some cases, you can heavily optimize GetOptimizedRepList() , such as

APickupFactory version.

• AActor::IsNetRelevantFor()

o Net relevancy caching for Pawns (during a single pass of one client

only, since some things like Weapon Attachment are relevant based

on their Pawn’s relevancy): bCachedRelevant flag.

Cheat Detection and Prevention

We have encountered the following types of network-related cheats in Unreal

Tournament:

• Speedhack

o Takes advantage of the fact we use the client’s clock for movement

updates.

o Built-in detection by verifying client and server clock don’t move at

excessively different rates.

o False positives with substantial packet loss

• Aimbots - UnrealScript and external versions

• Wall hacks and radars - UnrealScript and external versions

Traffic Monitoring

To monitor network traffic, licensees can compile the engine with:

#define SUPPORT_SUPPRESSED_LOGGING 1 (UnBuild.h)

This enables network statistic gathering via DevNetTraffic (automatic in

Debug). To unsuppress network statistic, comment out the line

Suppress[#]=DevNetTraffic in your game Engine configuration, which is

generated from the DefaultEngine.ini configuration file.

With DevNetTraffic , a complete summary of network data received by the

machine will be written to the log. In other words, do this on the client side to

see the data sent by the server. Do it on the server side to see the data sent by

the client. The data is written to the log in a very verbose format, giving

timestamps for all packets, along with a summary of all replicated actors,

variables, and function calls.

The following console command can also be used to unsuppress network statistic

gathering:

unsuppress DevNetTraffic

Network Driver Implementation

Plug-in Network Drivers

Unreal's network support is generalized through a plug-in interface based on the

C++ UNetDriver class. The Unreal engine deals with all networking issues

through the UNetDriver class, and dynamically loads the appropriate network

driver specified in the Unreal.ini configuration file, which defaults to:

[Engine.Engine]

NetworkDevice=IpDrv.TcpNetDriver

Unreal's current Internet support is the UDP network driver, named

TcpNetDriver . However, it is quite possible to support new kinds of networks by

creating new subclasses of UNetDriver , and using the TcpNetDriver source as a

guideline for how to implement the new functions. In fact, the Maverick Software

team has created an AppleTalk driver for the Mac version of Unreal using this

interface.

The network driver is responsible for opening connections, closing connections,

sending data, and receiving unreliable data. However, the contents of the data is

defined by the Unreal Wire Protocol, and is completely opaque to the network

driver itself. Thus, UNetDriver has no idea what information it's communicating,

it just sends and receives it blindly. Its characteristics are as follows:

Connection-oriented. UNetDriver is responsible for maintaining a list of

connections defined by UNetConnection subclasses. When UNetDriver is layered

on top of a connectionless protocol (such as UDP), it must contain its own

internal logic for maintaining connections, handling their timeouts, etc.

UNetDriver is packet-oriented, rather than stream-oriented. All data sent and

received through UNetDriver exists in discrete packets of size

0...MAX_PACKET_SIZE .

Packets are sent unreliably. All reliable sending and receiving of packets is

performed at a higher level which is invisible to UNetDriver . A packet sent from

one machine to another might not arrive, might arrive once, or might arrive

multiple times. Additionally, packets might arrive out of order or with significant

delay.

Packets are never corrupted. When a packet is received, it is guaranteed that the

size and contents received are identical to the size and contents that were sent.

Internet Driver

Unreal's Internet support is based on UDP, the standard Internet protocol for

unreliable, connectionless communication. All Unreal gameplay coordination

between a client and server goes through one constant, unchanging pairing of

UDP addresses (where the client and server each have a 32-bit Internet address

and a 16-bit port number). The default port number can be seen in the

Unreal.ini configuration file.

Thus, Unreal's UDP packets are extremely easy to proxy, and they can be

proxied transparently without the proxy having to know anything about their

contents.

Unreal Wire Protocol

The Unreal Wire Protocol defines the contents of packets as a stream of bits. The

protocol deals with a variety of concepts, such as replicating variables and

functions, creating actors, destroying Actors, transmitting files, and exchanging

packets reliably and unreliably (both types are used in various circumstances).

Although the protocol has undergone some major changes to improve efficiency

and reliability, there aren't any plans to document the packet format any further.

It must be mentioned that the protocol is closely tied to the data structures of

the Unreal package file format described in the Unreal Packages Documentation,

so it would be quite difficult for an external application to parse and do anything

useful with. The source code and comments are the best guide.

The Present and The Future

The words one might use to describe Unreal's networking architecture are

"powerful", "general", "complex" and "hard to master". The architecture went

through a tremendous amount of evolution during the game's development, to

arrive at the current solution which is a balance between power, simplicity, and

the pragmatic need to solve certain problems.

The ideal networking architecture, from an ease-of-programming standpoint, is

the pure client-server model, where the client truly acts as a dumb rendering

terminal, and receives a display list from the server. However, as discussed

previously, the analysis of the rate of bandwidth improvement versus hardware

improvement indicates that we live in a world where the pure client-server model

will be impractical for the foreseeable future.

Thus, the ability to provide rich client-side simulation of physics and script

execution in general is tantamount in any next-generation networking engine. In

Unreal we have defined a generalized networking model based on the

generalized replication of objects, object variables, and object function calls. This

model provides rich simulation capabilities without being hardcoded to any

particular simulation model.

I'm pretty sure that this broad networking architecture for Unreal is the right

one. Some of the research areas I investigated while determining the current

direction include database replication, Unix RPC, the CORBA distributed object

model, and Java RPC. My general conclusion is that, though there are some cool

ideas out there, nobody else is really pushing the limitations of Internet

technology as much as game developers. The same can probably be said about

other research areas, such as real-time 3D.

As for the future, there are a lot of areas where this model can be extended and

improved. The addition of multicast replicated functions would increase the

amount of simulation that can be done without variable replication. An extended

peer proxy model could enable the creation of a server backbone enabling the

realistic real-time flow of NPC objects between servers. The replicated object

model could be extended to other areas of the engine, such as the user-interface

and chat system. There is a tremendous amount of promise for this architecture

to be applied to much richer, more persistent game environments such as the

worlds of _Ultima Online, while retaining the distributed, user-modifiable nature

of the system. In the coming years, networking will be an extremely interesting

area of game development!_

- Tim Sweeney

Useful links

Much of the original information from this document was updated to include the

information from the Networking presentation at the GDC 2006 Licensee

Seminar.

