

CHAPTER 11

STATES

• CHAPTER 11 – STATES

o 11.1 WHAT IS STATE PROGRAMMING

o 11.2 STATES IN UNREAL ENGINE 3

� THE AUTO KEYWORD

� THE IGNORES KEYWORD

� THE SUPER & GLOBAL KEYWORDS

o 11.3 - BASIC STATE TRANSITIONS

� GOTOSTATE

� GOTO

� STATE EVENTS

� BEGINSTATE

� ENDSTATE

o TUTORIAL 11.1 – STATE TRIGGER, PART I: FUNCTION OVERRIDING

o 11.4 - STATE INHERITANCE

� EXTENDING STATES

o TUTORIAL 11.2 – STATE TRIGGER, PART II: STATE INHERITANCE

o TUTORIAL 11.3 – STATE TRIGGER, PART III: AUTO STATE

o 11.5 - STATE CODE

� LABELS

� LATENT FUNCTIONS

� ACTOR LATENT FUNCTIONS

� Sleep

� FinishAnim

� CONTROLLER LATENT FUNCTIONS

� MoveTo

� MoveToward

� FinishRotation

� WaitForLanding

� UTBOT LATENT FUNCTIONS

� WaitToSeeEnemy

� LatentWhatToDoNext

o 11.6 - STATE STACKING

� PUSHSTATE & POPSTATE

� STATE STACKING EVENTS

� PUSHEDSTATE

� POPPEDSTATE

� PAUSEDSTATE

� CONTINUEDSTATE

o 11.7 - STATE-RELATED FUNCTIONS

� ISINSTATE

� GETSTATENAME

� ISCHILDSTATE

� DUMPSTATESTACK

o TUTORIAL 11.4 – STATE TRIGGER, PART IV: STATE STACKING

o TUTORIAL 11.5 – TURRET, PART I: MU_AUTOTURRET CLASS AND

STRUCT DECLARATION

o TUTORIAL 11.6 – TURRET, PART II: CLASS VARIABLE

DECLARATIONS

o TUTORIAL 11.7 – TURRET, PART III: EDITABLE VARIABLE

DECLARATIONS

o TUTORIAL 11.8 – TURRET, PART IV: DEFAULT PROPERTIES

o TUTORIAL 11.9 – TURRET, PART V: POSTBEGINPLAY() EVENT

o TUTORIAL 11.10 – TURRET, PART VI: ROTATION FUNCTIONS

o TUTORIAL 11.11 – TURRET, PART VII: STATE DECLARATIONS

o TUTORIAL 11.12 – TURRET, PART VIII: GLOBAL TAKEDAMAGE()

FUNCTION

o TUTORIAL 11.13 – TURRET, PART IX: GLOBAL TICK() FUNCTION

o TUTORIAL 11.14 – TURRET, PART X: IDLE STATE BODY

o TUTORIAL 11.15 – TURRET, PART XI: ALERT STATE BODY PART I

o TUTORIAL 11.16 – TURRET, PART XII: ALERT STATE BODY PART II

o TUTORIAL 11.17 – TURRET, PART XIII: DEFEND STATE BODY PART I

o TUTORIAL 11.18 – TURRET, PART XIV: DEFEND STATE BODY PART II

o TUTORIAL 11.19 – TURRET, PART XV: DEFEND STATE BODY PART III

o TUTORIAL 11.20 – TURRET, PART XVI: DEAD STATE BODY

o TUTORIAL 11.21 TURRET, PART XVII – COMPILING AND TESTING

o TUTORIAL 11.22 – UTBOT_PELLET CLASS SETUP

o TUTORIAL 11.23 – PELLETCOLLECTING STATE, PART I:

FINDNEWGOAL() FUNCTION

o TUTORIAL 11.24 – PELLETCOLLECTING STATE, PART II:

HASREACHEDGOAL() FUNCTION

o TUTORIAL 11.25 – PELLETCOLLECTING STATE CODE

o TUTORIAL 11.26 – PELLETHUNTING STATE, PART I: FINDNEWGOAL()

FUNCTION

o TUTORIAL 11.27 – PELLETHUNTING STATE, PART II:

HASREACHEDGAOL() FUNCTION

o TUTORIAL 11.28 – EXECUTEWHATTODONEXT() AND

WANDERORCAMP() FUNCTION OVERRIDES

o TUTORIAL 11.29 – PELLET CLASSES BOT SETUP

o TUTORIAL 11.30 – PELLET BOT COMPILING AND TESTING

o 11.8 - SUMMARY

When programmers set about programming large and complex systems they

usually tend to create and model their programs into states. States allow the

programmer to focus on the functionality within that state and keep related

functionality together. Unlike many other languages, UnrealScript has a

mechanism for partitioning your code instead states built right in. This makes it

really easy to program functionality like having our character look around

randomly if he is in an idle state and not have to worry about that code getting

run if he’s in another.

11.1 WHAT IS STATE PROGRAMMING

State programming, also referred to as state machine programming, is a way to

logically break out the functionality of a program into more manageable pieces.

The idea is that by separating out the complex functionality of an entity in to

what is referred to as a state, it will make programming the entity easier.

A state can be defined in any way you want to; it’s all about making your life

easier as the programmer. For example, if we were creating a pong game, we

might create the following states to make programming the game easier:

• Title Screen

• High Scores Screen

• Game Playing Screen

• Game Paused Screen

• Game Over Screen

With the states defined above, we can be sure the input we are getting from the

user is handled properly and it makes it much more difficult to handle the input

incorrectly. For example, it would be much more difficult to start moving the

paddle when the game is paused if we have a separate state to handle the user’s

input.

Another vital part of state programming is the transitions. This is how you get

from one state to another. Again, this can be done in multiple different ways, but

it is important to understand the relationships between states and how you can

get from one to the other.

Continuing our example above, a possible transition from the Game Playing

Screen to the Game Paused Screen would be the user pressing the Start button

on a controller.

A well-designed state machine will have well defined states and transitions.

When we are thinking about states, it might be helpful to create a diagram.

Typically a state machine diagram looks something like the following:

Figure 11.1 – State machine diagram for the example pong game.

Looking at the diagram, the circle areas are the states and the arrows represent

the transitions between the states. In our example above we have a single

transition from Title Screen to Game Playing Screen but there is no transition

from the Game Playing Screen to the Title Screen as the arrow only travels one

direction.

In the example above we used states to represent different states in a game, but

we can also use states to describe the status of a player or of an AI opponent. An

example of some of the states that an AI enemy might could be:

• Searching

• Attacking

• Fleeing

11.2 STATES IN UNREAL ENGINE 3

Unlike many programming languages, UnrealScript provides a built-in way of

defining states inside of classes. This makes it possible for each class to have

multiple different modes of behavior efficiently and easily. States are declared in

a very similar fashion to functions only the State keyword is used in place of the

Function keyword. First the State keyword is used followed by the name of the

state. Curly braces are then used to contain the code belonging to the new state.

Let’s take a look at what a state might look like:

state() GamePlaying

{

 function UpdatePaddle()

 {

 // Handle the user’s input for moving the pad dle.

 }

}

state() GamePaused

{

 function UpdatePaddle()

 {

 // This should do nothing.

 }

}

In the code sample we defined two states: GamePlaying and GamePaused.

Inside that state you can see that we have two functions with the same name:

UpdatePaddle. Normally it is not allowed to have two functions both with the

same name and same argument list. However, this is the beauty of state

programming in UnrealScript.

When functions are defined in UnrealScript within state blocks, the Unreal engine

determines the state the current object is and only executes the code for that

state. This can make our lives a little easier as we don’t need to handle the

states within the actual function itself. For example, if we wanted to do this

without using UnrealScript’s built-in state mechanism, we’d have to do

something like this:

function UpdatePaddle()

{

 if (GameState == GamePlaying)

 {

 // Handle the game playing code.

 }

 else if (GameState == GamePaused)

 {

 // Handle the game paused code.

 }

}

Now that doesn’t look that bad, but of course I didn’t actually provide any of the

implementation details and this example is only using two states. Imagine if you

had five states that you could be in and each required some fairly sophisticated

implementation details. It then becomes fairly obvious that handling states in the

manner above can get pretty confusing, at best.

THE AUTO KEYWORD

The auto state is the state that is initial state of the object. Another way to think

about it is that this is the state that the object automatically starts in. The engine

automatically calls the SetInitialState() event of all Actors within the world and

this event contains the functionality for setting the Actor’s state to whichever

state is declared as the auto state. To mark a state as auto, you prefix the state

declaration with the auto keyword, like this:

auto state MyState

{

 // You state code goes here.

}

THE IGNORES KEYWORD

Sometimes you want to ignore some of the state functions in a state. For

example, if an actor is fleeing you might not want to handle and code any of the

code to look for a target. We could override the function and leave the function

body empty, but that is tedious. Fortunately UnrealScript provides us an easy

solution to the problem: the ignores keyword. By simply using an ignore

statement beginning with the ignores keyword followed by a list of function to be

ignored separated by commas, the actor can be told not to bother executing

those functions while in the current state.

An example of this can be seen below.

state Fleeing

{

 ignores SearchForTarget, SomeOtherFunction;

}

THE SUPER & GLOBAL KEYWORDS

You’ve seen and made use of the Super keyword many times up to this point in

order to call a version of an overridden function in the parent class or some

specific class up the hierarchy. This keyword works very much the same when

used within a function inside of a stat. it will execute the version of that function

contained within the same state in the parent class or any class up the hierarchy

if specified. If no version of that function can be found in that state in the parent

class, the global version of the function in the parent class will be executed

instead. If no version of the function exists in the state or globally in the parent

class, obviously an error will occur when compiling the scripts.

The Global keyword works in a similar fashion, only it allows the version of a

function overridden in a state to have its version not within any state called. In

other words, the version of a function belonging to the class can be called from

within a state which also overrides that function. This can be very useful in

promoting code reuse in cases where a general version of a function can be

defined in the class and more specific version of that function can be redefined

within states belonging to that class, while still making use of the code within the

generalized function without having to include that code within the function

defined in the state.

Take a look at an example of the Global keyword being used:

class StateClass extends Actor;

event Touch()

{

 `log(“Someone is near.”);

}

state Damaging

{

 event Touch()

 {

 Global.Touch();

 `log(“Let’s damage them!”);

 }

}

state Healing

{

 event Touch()

 {

 Global.Touch();

 `log(“Let’s heal them!”);

 }

}

In the example above, when the actor is not within any state, the global Touch()

event gets called resulting in the phrase “Someone is near.” being output to the

log file. What happens when the actor is in the Damaging state, though? In this

case, the phrase “Someone is near.” is still output because of the use of the

Global keyword to call the Touch() event defined in the class. Then the phrase

“Let’s damage them!” is output as well. In a similar fashion, when in the Healing

state, the phrase “Someone is near.” is output by the global Touch() event and

then the phrase “Let’s heal them!” is output by the state’s Touch() event.

Obviously in this particular example, there wasn’t much saved since the entire

global Touch() event is only a single line, but it should be evident that the use of

the Global keyword could be extremely useful when the global version of a

function contains many lines of code that are to be used within one or more

states in addition to code specific to each of those states.

Note: The use of the Global keyword results in the most derived version of the

global function being executed. This means if the function is not overridden in

the current class, the engine looks up the hierarchy until the last time the

function was defined within one of the parent classes.

11.3 - BASIC STATE TRANSITIONS

In order for states to be of any real use, there must be a way to transition, or

change, from one state to the next. In some cases, transitions also occur within

the same state from one label to another. These basic transitions are performed

with one of the following functions.

GOTOSTATE

GotoState(optional name NewState, optional name La bel, optional

bool bForceEvents, optional bool bKeepStack)

This function changes the state the object is in to the given state and starts

executing code at the given LabelName; if no LabelName is given, the Begin

label is assumed. If this function is called from the object’s state code, then the

state switch happens immediately. If it is called from one of the objects other

functions, the switch won’t happen until the execution switches back to the state

code. When calling this function causes the actor to transition to a different state

than the one the actor is currently in, the BeginState() event of the new state

and EndState() event of the current state are always executed. These events are

covered in the State Events section below.

The bForceEvents parameter specifies whether the BeginState() and EndState()

events should be executed even when transitioning to the same state the Actor

is already in.

The bKeepStack parameter specifies whether the current state stack should be

prevented from being cleared or flushed. The state stack will be discussed in

greater detail later in the chapter.

GOTO

Goto(‘LabelName’)

This function is used to jump to a new label within the state and continue with

the state code execution from that point.

Goto()

When called with no LabelName parameter, Goto() stops the state code

execution. Execution of code is resumed when the state changes or a new label

is transitioned to.

STATE EVENTS

State events are events, or functions, that get executed automatically by the

engine when transitioning from one state to another, or within the same state in

certain circumstances.

BEGINSTATE

This event is executed from within the GotoState() function when the NewState

parameter of the function is a state other than the current state of the actor or

the bForceEvents parameter is True. This event is executed immediately upon

transitioning to the new state before any state code is executed.

BeginState(Name PreviousStateName)

The PreviousStateName parameter holds the name of the state the actor was in

previously before the current transition took place. This allows specific actions to

be performed based on which state the actor is transitioning from.

ENDSTATE

This event is executed from within the GotoState() function when the NewState

parameter of the function is a state other than the current state of the actor or

the bForceEvents parameter is True. This event is executed before transitioning

to the new state.

EndState(Name NewStateName)

The NewStateName parameter holds the name of the state the actor is

transitioning to after the transition takes place. This allows specific actions to be

performed depending on which state the actor is transitioning to.

TUTORIAL 11.1 – STATE TRIGGER, PART I:
FUNCTION OVERRIDING

This series of tutorials walks through the creation of a very simple actor that

behaves as a trigger. Through the use of states, the behavior of the actor when

triggered is changed. This example is meant as a way to demonstrate the

purpose and use of states on a very basic level. To begin with, the class is

declared and a single state is implemented.

1. Open ConTEXt and create a new file using the UnrealScript highlighter.

2. Declare the new class name MU_StateTrigger extending from the base Actor

class. Make this class placeable as well so it can be placed within a map in

UnrealEd.

class MU_StateTrigger extends Actor

 placeable;

3. This class does not have any variable declarations, but the defaultproperties

block is used to give the actor a mesh and collision geometry. There is a lot to

add in this block, but we won’t spend much time on it as we are borrowing from

the Healer actor created in tutorials found earlier in this book. Create the

defaultproperties lock now.

defaultproperties

{

}

For the most part, the defaultproperties block consists of the creation of

StaticMeshComponent sub-objects for the visual aspect of the actor and a

CylinderComponent sub-object for the collision of the actor. The section below

can be copied and pasted from the Healer.uc script.

Begin Object Class=StaticMeshComponent Name=StaticM eshComponent0

StaticMesh=StaticMesh'LT_Deco.SM.Mesh.S_LT_Deco_SM_ PodiumScorpion'

 Translation=(X=0.000000,Y=0.000000,Z=-40. 000000)

 Scale3D=(X=0.250000,Y=0.250000,Z=0.125000)

 CollideActors=false

 bAllowApproximateOcclusion=True

 bForceDirectLightMap=True

 bCastDynamicShadow=False

 LightingChannels=(Dynamic=False,Static=Tr ue)

End Object

Components.Add(StaticMeshComponent0)

Begin Object Class=StaticMeshComponent Name=StaticM eshComponent1

StaticMesh=StaticMesh'LT_Deco.SM.Mesh.S_LT_Walls_SM _FlexRing'

 Translation=(X=0.000000,Y=0.000000,Z=-40. 000000)

 Scale3D=(X=0.500000,Y=0.500000,Z=0.500000)

 CollideActors=false

 bAllowApproximateOcclusion=True

 bForceDirectLightMap=True

 bCastDynamicShadow=False

 LightingChannels=(Dynamic=False,Static=Tr ue)

End Object

Components.Add(StaticMeshComponent1)

Begin Object Class=StaticMeshComponent Name=StaticM eshComponent2

StaticMesh=StaticMesh'LT_Light.SM.Mesh.S_LT_Light_S M_LightCone01'

 Translation=(X=0.000000,Y=0.000000,Z=-40. 000000)

 Scale3D=(X=2.000000,Y=2.000000,Z=-1.00000 0)

 CollideActors=false

 bAllowApproximateOcclusion=True

 bAcceptsLights=False

 CastShadow=False

End Object

Components.Add(StaticMeshComponent2)

Begin Object Class=CylinderComponent NAME=Collision Cylinder

 CollideActors=true

 CollisionRadius=+0040.000000

 CollisionHeight=+0040.000000

End Object

CollisionComponent=CollisionCylinder

Components.Add(CollisionCylinder)

bCollideActors=true

bStatic=true

bMovable=False

bEdShouldSnap=True

Figure 11.2 – The subobjects create the state trigger’s visual

appearance.

4. The Touch() event is overridden in this class. Initially, the actor will not be

within any state and this Touch() event will be called whenever another actor

collides with this actor. Declare the Touch() event.

event Touch(Actor Other, PrimitiveComponent OtherCo mp, vector

HitLocation, vector HitNormal)

{

}

The Broadcast() function of the Gameinfo class is used within this event to

output a message to the screen when a collision is detected.

WorldInfo.Game.Broadcast(self,"This is the StateTig ger class.");

In addition, the actor is sent to a new state, the Dialog state which is declared in

the next step.

GotoState('Dialog');

5. The Dialog state is the first state declared within the MU_StateTrigger class.

state Dialog

{

}

6. The Touch() event is overridden inside the body of the Dialog state. This will

cause this specific version of the Touch() event to be executed when the actor is

within the Dialog state and a collision is detected with another actor.

event Touch(Actor Other, PrimitiveComponent OtherCo mp, vector

HitLocation, vector HitNormal)

{

}

As in the earlier declaration of the Touch() event, this version will use the

Broadcast() function to output a message to the screen, only this time the

message will be different.

WorldInfo.Game.Broadcast(self,"This is the base dia log state's

output");

7. Save the script in the MasteringUnrealScript\Classes directory with the name

MU_StateTrigger.uc and compile the scripts. Fix any syntax errors which may be

present.

8. Open UnrealEd and the DM-CH_11_Trigger.ut3 map. This is a simple two-

room map that you have seen several times throughout the book.

Figure 11.3 The DM-CH_11_Trigger map

9. Open the Actor Browser and select the MU_StateTrigger class. Right-click in

the viewport and choose Add MU_StateTrigger Here to place an instance of the

new actor.

Figure 11.4 – The MU_StateTrigger actor is added to the map.

10. Right-click on the floor of one of the rooms and choose Play From Here to

test the map. Run over the trigger actor to initiate the Touch() event and

observe the message displayed to the screen. It should be the message from the

original Touch() event.

Figure 11.5 – The Touch() event message appears.

Now run over the trigger actor again. This time the message from the Dialog

state’s Touch() event should be displayed instead.

Figure 11.6 – The Dialog state’s Touch() event message is now

displayed.

This is because the actor is now in the Dialog state and its version of the Touch()

event is taking precedence over any other versions present within the class.

11. Save this map with a new name so it can be used in subsequent tutorials.

<<<< End of Tutorial >>>>

11.4 - STATE INHERITANCE

Inheritance works just like you’d expect it to for states. When you derive from a

class that has a state, you get all of its states, state functions, and labels in your

class so you can override them if you’d like or keep the base class’s

implementation.

Let’s take a look at an example:

class Fish extends Actor;

state Eating

{

 function Swim()

 {

 Log(“Swimming in place while I eat.”);

 }

Begin:

 Log(“Just a fish in my Eating state.”;

}

class Shark extends Fish;

state Eating

{

 function Swim()

 {

 Log(“Swimming fast to catch up with my f ood.”);

 }

}

class Dolphin extends Fish;

state Eating

{

Begin:

 Log(“Just a dolphin in my Eating state.”);

}

In our example above we have a Fish, Shark, and Dolphin class defined. Both the

Shark and the Dolphin derive from the Fish class and each override a different

portion of the base implementation; the Shark class overrides the Eat function

and the Dolphin class overrides the Begin label.

EXTENDING STATES

It is also possible to extend states in the current class, as long as the state is not

overriding a state in the derived class. This can be really useful when you have a

set of states that all have common functionality. For example, you might have

some common state code that happens while an actor is moving but then you

want certain functionality to be specific to when the actor is walking versus when

the actor is running. Let’s look at an example:

state Moving

{

 // Code common to all types of movement.

}

state Running extends Moving

{

 // Running specific code.

}

state Walking extends Moving

{

 // Walking specific code.

}

TUTORIAL 11.2 – STATE TRIGGER, PART II:
STATE INHERITANCE

This tutorial sees the addition of the BeginState() and EndState() events to the

Dialog state as well as the creation of the Greeting state which extends the base

Dialog state in order to show how state inheritance works.

1. Open ConTEXT and the MU_StateTrigger.uc script.

2. After the Touch() event in the Dialog state’s body, declare the BeginState()

event with its one Name parameter called PreviousStateName.

event BeginState(Name PreviousStateName)

{

}

3. Inside the BeginState() event, use the Broadcast() function once again to

display a message to the screen. This message will display the last state the

actor was in before it was placed into the current state.

WorldInfo.Game.Broadcast(self,"Exiting

the"@PreviousStateName@"State");

4. Next, declare the EndState() event with its Name parameter NextStateName.

event EndState(Name NextStateName)

{

}

5. A similar call to the Broacast() function is made within this event.

WorldInfo.Game.Broadcast(self,"Entering the"@NextSt ateName@"State");

6. Below the Dialog state, declare a new state named Greeting and extend this

new state from the Dialog state.

state Greeting extends Dialog

{

}

This state, without declaring any functions or events in its body, already contains

the Touch(), BeginState(), and EndState() events identical to those declared

within the Dialog state.

7. The Touch() event is overridden within the Greeting state to output and

entirely new message to the screen when a collision is detected while the actor is

within this state.

event Touch(Actor Other, PrimitiveComponent OtherCo mp, vector

HitLocation, vector HitNormal)

{

 WorldInfo.Game.Broadcast(self,"Hello and welcome to the states

example");

}

8. Back in the Touch() event of the Dialog state, add a call to the GotoState()

function to place the actor into the Greeting state when that event is executed.

GotoState('Greeting');

9. Save the script and compile the scripts, fixing any errors which are present.

10. Open UnrealEd and the map containing the MU_StateTrigger actor created in

the previous tutorial.

Figure 11.7 – The map containing the MU_StateTrigger actor.

11. Right-click on the floor of one of the rooms and choose Play From Here to

test the map. Run over the trigger actor to see the original message of the

class’s main Touch() event. Notice that the message from the BeginState() event

of the Dialog state is displayed as well.

Note: Because the actor was not in any state to initially, the sate name

referenced by the PreviousStateName parameter of the BeginState() event is

None.

Figure 11.8 – Two separate messages are now displayed.

12. Run over the trigger actor once more to cause the Dialog state’s Touch()

event to be executed displaying the new message to the screen. You should also

notice that the messages from the EndState() event of the Dialog state as well

as the BeginState() event of the Greeting state.

Figure 11.9 – All three messages are displayed this time.

13. Finally, run over the trigger actor once more. The message from the Touch()

event of the Greeting state should now be displayed on the screen.

Figure 11.10 – The Greeting state’s Touch() event message is displayed.

<<<< End of Tutorial >>>>

TUTORIAL 11.3 – STATE TRIGGER, PART III:
AUTO STATE

The use of the Auto keyword when declaring a state causes the actor to be

placed in that state initially when the match begins. The Dialog state will be set

as the MU_StateTrigger’s default state in this tutorial. Also, Two additional states

will be added to further drive home the concept of state inheritance,

1. Open ConTEXT and the MU_StateTrigger.uc script.

2. Add the Auto keyword to the declaration of the Dialog state to force the actor

into this state when the game begins.

auto state Dialog

{

 …

 //code removed for brevity

 …

}

3. Declare a new state named Inquisitor which extends from Greeting this time.

state Inquisitor extends Greeting

{

}

4. Next declare another new state named Goodbye which extends from the

Inquisitor state just declared.

state GoodBye extends Inquisitor

{

}

5. Now, add a call to the GotoState() function in the Touch() event of the

Greeting state to place the actor into the Inquisitor state.

GotoState('Inquisitor');

6. Copy the Touch() ebent from the Greeting state and paste it into the

Inquisitor state, changing the message in the Broadcast() function call and the

state name in the GotoState() function call as shown below.

event Touch(Actor Other, PrimitiveComponent OtherCo mp, vector

HitLocation, vector HitNormal)

{

 WorldInfo.Game.Broadcast(self,"Are you learning a great deal

about UnrealScript?");

 GotoState('Goodbye');

}

7. Paste the Touch() event into the Goodbye state as well and make the changes

to the message and state name for this state’s version of the function like so.

event Touch(Actor Other, PrimitiveComponent OtherCo mp, vector

HitLocation, vector HitNormal)

{

 WorldInfo.Game.Broadcast(self,"Thanks and have a nice day!");

 GotoState('Greeting');

}

8. Save the script and compile the scripts, fixing any errors which are present.

9. Open UnrealEd and the map containing the MU_StateTrigger actor used in the

previous tutorial. Right-click on the floor of one of the rooms and choose Play

From Here to test the map.

Figure 11.11 – Test the map using the Play From Here functionality.

10. Run over the trigger actor. A message should appear, but this time it should

be the message from the Dialog state’s Touch() event instead of the main

Touch() event of the class since the actor was placed into the Dialog state by

default because of the use of the Auto keyword when declaring that state. Of

course, the BeginState() and EndState() messages will also be displayed for the

Greeting state and Dialog state, respectively.

Figure 11.12 – The Dialog state’s Touch() event message is displayed

initially.

11. Continue running over the trigger to see the rest of the messages. The actor

should loop between the Greeting, Inquisitor, and Goodbye states continuously

now, showing the messages of each state.

<<<< End of Tutorial >>>>

11.5 - STATE CODE

States are essentially made up of two parts: functions and state code. State code

is code that gets executed upon a transition of some kind, usually from one state

to another, but also within the same state in some cases. This code is not located

within any function, but simply within the state itself and following a label of

some sort.

LABELS

Labels are used to designate a specific location within state code at which to

begin executing that code. Labels can have any valid name, usually consisting

solely of characters, but when using state code one label is special and that is

the “Begin” label. This particular label is the default label used to start the

execution of the state code. Take a look at the example below.

auto state MyState

{

 function MyFunc()

 {

 // Does something...

 }

Begin:

 Log(“MyState’s Begin label is being executed.”) ;

 Sleep(5.0);

 goto(‘MyLabel’);

MyLabel:

 Log(“MyState’s MyLabel label is being executed. ”);

 Sleep(5.0);

 goto(‘Begin’);

}

LATENT FUNCTIONS

In the above example, as soon as the object gets into MyState, it will start

executing the code in the Begin label which will log a message, sleep for five

seconds, go to the MyLabel label, log a message, sleep for five seconds, and then

start the process all over. This will continue to happen as long as the object is in

the MyState state.

You might be wondering what is happening while the state is sleeping. That’s a

good question because normally the code that is executing is blocking, that is, it

must complete all of its execution before any other code can run. Well, there are

certain functions in UnrealScript that are called latent functions. Simply put,

these functions allow other code to be executed (i.e. code in other states and the

rest of the game) but stop the next code in its current execution path from being

run.

When working with latent functions there are really only a few things you need to

remember:

1. The function will return after some amount of time and then your state code

will continue to execute

2. Latent functions can only be used within state code

3. You cannot call latent functions from within the body of a function

ACTOR LATENT FUNCTIONS

The Actor class contains a couple very general latent functions that can be used

in the state code of any class extending from the Actor class.

Sleep

This function causes state code to pause execution for a specified amount of

time. Once that period of time is up, the state code resumes execution directly

after the Sleep() function call.

Sleep(float Seconds)

Seconds is the number of seconds the state code should pause for.

FinishAnim

This function will cause the execution of state code to pause until the current

animation playing on the AnimNodeSequence passed to the function finishes.

FinishAnim(AnimNodeSequence SeqNode)

The SeqNode parameter is the animation node within the AnimTree associated

with the actor that the animation is playing on.

CONTROLLER LATENT FUNCTIONS

The Controller class contains several latent functions mostly pertaining to path

finding and navigation.

MoveTo

This function causes the Pawn controlled by the Controller to move to a specific

location in the world.

MoveTo(vector NewDestination, optional Actor ViewFo cus, optional

bool bShouldWalk = (Pawn != None) ? Pawn.bIsWalking : false)

NewDestination is the location within the world the Pawn should move to.

ViewFcous is an Actor which the Pawn should face. It’s rotation will be updated to

ensure the Pawn always faces the ViewFocus.

The bShouldWalk parameter specifies whether the Pawn should walk or run to

the new location.

MoveToward

This function is similar to the MoveTo function except this one causes the Pawn

being controlled by the Controller to move toward a specific Actor instead of a

location.

MoveToward(Actor NewTarget, optional Actor ViewFocu s, optional float

DestinationOffset, optional bool bUseStrafing, opti onal bool

bShouldWalk = (Pawn != None) ? Pawn.bIsWalking : fa lse)

NewTarget is the Actor the Pawn should move toward.

ViewFcous is an Actor which the Pawn should face. It’s rotation will be updated to

ensure the Pawn always faces the ViewFocus.

DestinationOffset allows a relative offset to the location of the NewTarget to be

specified causing the Pawn to move to a location near the Newtarget, but not the

exact location.

The bUseStrafing parameter specifies whether the Pawn is allowed to strafe while

moving to the new destination.

The bShouldWalk parameter specifies whether the Pawn should walk or run to

the new location.

FinishRotation

This function pauses the execution of state code until the rotation of the Pawn

controlled by the Controller matches the rotation specified by the

DesiredRotation property of the Pawn.

FinishRotation()

WaitForLanding

This function pauses the execution of state code until the Pawn controlled by the

Controller has landed when in the PHYS_Falling physics type.

WaitForLanding(optional float waitDuration)

The waitDuration parameter is the number of maximum seconds to wait for the

Pawn to land. If the Pawn does not land by the time this duration expires, the

LongFall() event is executed.

UTBOT LATENT FUNCTIONS

The UTBot class has two latent function which are useful in the creation of new

AI behaviors.

WaitToSeeEnemy

This function causes the execution of state code to pause until the Pawn being

controlled is looking directly at its enemy, but only if the enemy is visible to the

Pawn.

WaitToSeeEnemy()

LatentWhatToDoNext

This function is used to call the WhatToDoNext() function which contains the

decision making functionality of the AI entity. Using the latent version causes the

call to be made when the appropriate time has passed, i.e. on the next tick. This

keeps the possibility of a race condition from occurring and allows time for the

actions of the AI entity to be carried out.

LatentWhatToDoNext()

11.6 - STATE STACKING

We’ve already seen that we can use the GotoState function to transition between

one state to another. When this happens, the state is changed and there is no

way to get back to the previous state and for most circumstances, this is exactly

what we want. For example, when changing from an EngagingEnemy to a

RunningLikeACoward state, we don’t want to switch back to the previous state.

For those times that we do want to be able to stop our current state and jump to

another and then come back there are the PushState and the PopState functions.

PUSHSTATE & POPSTATE

The PushState function is nearly identical to the GotoState function. When you

call it you pass it the state you want to transition to and optionally the label you

wish to start execution from. This function gets its name because it places the

new state onto the top of the stack pushing the other states down the stack.

The PopState function takes no parameters and returns you back to the

previously executing state.

Let’s take a look at a simple example:

state Looking

{

 function Look()

 {

 PushState(‘Peeking’);

 // Do something else interesting...

 }

Begin:

 PushState(‘Peeking’, ‘Begin’);

 // Do yet another interesting thing...

}

state Peeking

{

Begin:

 Log(“Nothing to see here.”);

 PopState();

}

There are some interesting implementation details you need to be aware of when

using PushState:

• When PushState is called from within state code, the call is treated as a

latent function. So in the example above, when PushState is called in the

Begin label, the code after that call would not execute until the state was

popped back to.

• When PushState is called from within a function, the call is not treated as a

latent function. So in the example above, when PushState is called from

within the Look function, the code after that call would be executed

immediately as PushState is only treated as a latent function from within

state code.

• You cannot push the same state on the stack multiple times; this will fail.

STATE STACKING EVENTS

These vents are similar to the BeginState() and EndState() events previously

discussed, but replace the functionality of those events when using the

PushState() and PopState() functions to transition between states. These events,

unlike the BeginState() and EndState() events, have no parameters.

PUSHEDSTATE

This event is executed immediately within the pushed state when transitioning to

a new state by way of the PushState() function.

POPPEDSTATE

This event is executed immediately within the popped state when transitioning

back to the previous state by way of the PopState() function.

PAUSEDSTATE

This event is executed within the state being paused when transitioning to a new

state by way of the PuchState() function.

CONTINUEDSTATE

This event is executed within the state being continued when transitioning back

to the previous state by way of the PopState() function.

11.7 - STATE-RELATED FUNCTIONS

In addition to the functions already detailed in this chapter, there are a few other

functions that are related to states and are very useful when creating new actors

that make use of states.

ISINSTATE

This function can be used to determine the currently active state of the actor or

if the given state is on the stack.

IsInState(name TestState, optional bool bTestState Stack)

TestState is the name of the state to check for. If the actor is currently in this

state, the function will return a value of True.

The bTestStateStack parameter specifies whether or not to check for the given

state in the state stack. If True and the state is located within the stack, the

function returns a value of True.

Here is an example:

state Looking

{

 // Something useful...

}

state Staring extends Looking

{

 // Something useful...

}

function StartLooking()

{

 if (!IsInState(‘Looking’))

 {

 PushState(‘Looking’);

 }

}

The IsInState() function call in the example would return true if the actor was in

either the Looking state or the Staring state as the IsInState() function returns

true for any state extending from the TestSate. This functionality does not work

with inherited states within the stack.

Here is the same example using the stack lookup method:

state Looking

{

 // Something useful...

}

state Staring extends Looking

{

 // Something useful...

}

function StartLooking()

{

 if (!IsInState(‘Looking’, True))

 {

 PushState(‘Looking’);

 }

}

In this example, the IsInState() function would only return true if the Looking

state itself appears in the state stack. If only the Staring state appears, a value

of False would be returned.

GETSTATENAME

This function returns the name of the currently active state of the actor. This

function has no parameters. This function is often used in similar situations to

the IsInState() function, only this function does not work with inherited states in

any way. Only the name of the actual state the actor is currently in is returned.

Here is an example:

state Looking

{

 // Something useful...

}

state Staring extends Looking

{

 // Something useful...

}

function StartLooking()

{

 if (GetStateName() == ‘Looking’)

 {

 PushState(‘Staring);

 }

}

The PushState() function call will only be executed when the actor is in the

Looking state.

ISCHILDSTATE

This function is used to determine if one state is extended from another. It

returns True if so, and False if not.

IsChildState(Name TestState, Name TestParentState)

TestState is the name of the child state to check.

TestParentState is the name of the parent state to check against.

DUMPSTATESTACK

This function will cause the current state stack to be output to the log for

debugging purposes. It is very likely that when creating new classes that make

heavy use of states and state stacking, some unwanted or undesirable behavior

may occur. This function makes sorting out these kinks and bugs easier.

TUTORIAL 11.4 – STATE TRIGGER, PART IV:
STATE STACKING

The ability of states to be stacked using the PushState() and PopState()

functions is new in Unreal Engine 3 and UT3. In this tutorial, the state trigger

actor uses these functions to navigate between the Greeting and Inquisitor

states showing the difference between this method and the GotoState() function

call.

1. Open ConTEXT and the M_StateTrigger.uc script.

2. In the Greeting state, comment out the GotoState() function call and replace

it with a call to the PushState() function passig it the same Inquisitor state.

//GotoState('Inquisitor');

PushState('Inquisitor');

3. Then in the Inquisitor state, comment out the GotoState() function call and

replace it with a simple PopState() function call.

//GotoState(‘Goodbye’);

PopState();

4. Save the script and compile the scripts, fixing any errors which are present.

5. Open UnrealEd and the map containing the MU_StateTrigger actor used in the

previous tutorial.

a. Right-click on the floor of one of the rooms and choose Play From Here to test

the map.

b. Run over the trigger actor to display the Dialog state’s messages and send the

actor into the Greeting state.

Figure 11.13 – The Dialog state’s Touch() and EndState() event

messages and the Greeting state’s BeginState() event message are

displayed.

c. Run back over the actor and notice that only the message from the Touch()

event was displayed. The BeginState() and EndState() events of the Inquisitor

and Greeting states, respectively, were ignored. Only the GotoState() function

causes these events to be executed.

Figure 11.14 – Only the message from the Touch() event of the Greeting

state is displayed.

d. Run over the actor again to display the Inquisitor state’s Touch() event

message.

Figure 11.15 – The Touch() event message from the Inquisitor state is

now displayed.

e. Finally, run over the actor one more time. Notice that the PopState() function

call in the Touch() event of the Inquisitor state placed the actor back into the

Greeting state causing the greeting message to be displayed once again.

Figure 11.16 – The message from the Greeting state is displayed once

again.

6. Obviously, the BeginState() and EndState() events won’t work now that the

class is using stacking. In order to get events to specify which state is being

pushed or pop in a similar fashion to before, the state stacking events are used

instead. Begin by declaring the PushedState() event in the Dialog state.

event PushedState()

{

}

Inside this function, place the same line of code used to output the message in

the BeginState() event, only use the GetStateName() function to get the

appropriate name of the state instead of the PreeviousStateParameter. Also,

change the word “Exiting” to read “Pushing”.

WorldInfo.Game.Broadcast(self,"Pushing the"@GetStat eName()@"State");

Copy and paste the entire event declaration 3 times changing the names of the

new declarations to PoppedState, PausedState, and ContinuedState. Then

change the word “Pushing” to read “Popping”, Pausing”, and “Continuing”,

respectively.

event PoppedState()

{

 WorldInfo.Game.Broadcast(self,"Popping

the"@GetStateName()@"State");

}

event PausedState()

{

 WorldInfo.Game.Broadcast(self,"Pausing

the"@GetStateName()@"State");

}

event ContinuedState()

{

 WorldInfo.Game.Broadcast(self,"Continuing

the"@GetStateName()@"State");

}

7. Save the script and compile the scripts again, fixing any errors which may be

present.

8. Open UnrealEd and the map saved previously with the state trigger actor in it.

a. Right-click on the floor of one of the rooms and choose Play From Here to test

the map.

b. Run over the trigger actor to display the Dialog state’s messages and send the

actor into the Greeting state.

Figure 11.17 – The Dialog state’s Touch() and EndState() event

messages and the Greeting state’s BeginState() event message are

displayed.

c. Run back over the actor and notice that the messages from the PausedState()

and PushedState() events are now displayed because of the use of the

PushState() function.

Figure 11.18 – The PausedState() and PushedState() messages are

displayed in addition to the Touch() message.

d. Run over the actor again to pop the Inquisitor state. The PoppedState() and

ContinuedState() events should now be displayed because of the PopState()

function call.

Figure 11.19 – The PoppedState() and ContinuedState() messages are

now displayed with the Touch() message.

This short series of tutorials was simply meant to provide a basic understanding

of what states are and how they work, including the various methods of

transitioning between them. In subsequent tutorials, states will be used in more

complex examples to give you a better feel for just how states can be used

within UT3 to create interesting new items to be used in the game.

<<<< End of Tutorial >>>>

TUTORIAL 11.5 – TURRET, PART I:
MU_AUTOTURRET CLASS AND STRUCT
DECLARATION

With the basics of using states out of the way, you will now embark on the

creation of a new placeable sentry turret that auto-targets any visible enemies.

This class is an extension of the Pawn class which will provide the visual aspect

of the actor and use states to differentiate behavior based on factors in its

environment. There is quite a bit of initial setup to be performed before we get

into the states of the turret so we will get that out of the way first.

1. Open ConTEXT and create a new file using the UnrealScript highlighter.

2. To begin with, declare the new pawn class called MU_AutoTurret and extend it

from the base Pawn class. Also, hide the AI, Camera, Debug, Pawn, and Physics

categories so they do not show up in the Properties window inside of UnrealEd

and make the class placeable.

class MU_AutoTurret extends Pawn

HideCategories(AI,Camera,Debug,Pawn,Physics)

 placeable;

3. This classes uses several structs that need to be defined before we move on

to declaring variables. First, a new RotationRange struct is created which consists

of two Rotators representing a minimum and maximum rotation around each of

the axes: Pitch, Yaw, and Roll. Also, three Bool variables specifying whether to

use the limits for each axis of rotation are declared.

//Min and Max Rotators Struct - limiting turret rot ation

struct RotationRange

{

 var() Rotator RotLimitMin;

 var() Rotator RotLimitMax;

 var() Bool bLimitPitch;

 var() Bool bLimitYaw;

 var() Bool bLimitRoll;

 structdefaultproperties

 {

 RotLimitMin=(Pitch=-65536,Yaw=-65536,Roll=-65 536)

 RotLimitMax=(Pitch=65536,Yaw=65536,Roll=65536)

 }

};

Note: default values for each Rotator have been defined using a

structdefaultproperties block.

Figure 11.20 – On the right, the rotation is not limited, on the left limits

have been put into place.

4. The next struct named TurretSoundGroup containing references to several

SoundCues is defined. These SoundCue references are used to determine which

sounds will play under certain circumstances.

// Sounds for turret behaviors

struct TurretSoundGroup

{

 var() SoundCue FireSound;

 var() SoundCue DamageSound;

 var() SoundCue SpinUpSound;

 var() SoundCue WakeSound;

 var() SoundCue SleepSound;

 var() SoundCue DeathSound;

};

5. The turret needs a few special effects such as a muzzle flash, damage effects

and a destruction effect which require references to the ParticleSystems to use

for these effects. A struct named TurretEmitterGroup holds these references.

Some other properties are present in this struct as well: a Float determining the

amount of time to show the muzzle flash effect for, the Name of the parameter

within the damage effect’s particle system that allows control of the spawn rate

of the particles, and a Bool to specify whether the damage effect continues after

the destruction of the turret.

//PSystems for the turret

struct TurretEmitterGroup

{

 var() ParticleSystem DamageEmitter;

 var() ParticleSystem MuzzleFlashEmitter;

 var() ParticleSystem DestroyEmitter;

 var() Float MuzzleFlashDuration;

 var() Name DamageEmitterParamName;

 var() Bool bStopDamageEmitterOnDeath;

 structdefaultproperties

 {

 MuzzleFlashDuration=0.33

 }

};

Note the default value set to 0.33 for the MuzzleFlashDuration property. This

should be a good starting value for most muzzle flashes.

6. Another struct named TurretBoneGroup provides references to three socket

names and the name of a skeletal controller. The socket names reference

sockets to be used as locators for any particle effects and for the spawning of the

projectiles the turret fires. The name of the skeletal controller is used to

manipulate the SkelControlSingleBone in the AnimTree assigned to the turret to

control the turrets rotation.

//Bone, Socket, Controller names

struct TurretBoneGroup

{

 var() Name DestroySocket;

 var() Name DamageSocket;

 var() Name FireSocket;

 var() Name PivotControllerName;

};

7. The final struct named TurretRotationGroup contains three Rotators to specify

the pose the turret should be placed in when idle, alert, or destroyed. The

rotation of the turret is interpolated from its current orientation to one of these

three rotations depending on the situation. This struct also contains a Bool

specifying whether to use a predefined pose when the turret is destroyed or a

randomly calculated pose.

//Rotators defining turret poses

struct TurretRotationGroup

{

 var() Rotator IdleRotation;

 var() Rotator AlertRotation;

 var() Rotator DeathRotation;

 var() Bool bRandomDeath;

};

Figure 11.21 – Rotations are used to create poses for the turret mesh.

8. Save the script in the MasteringUnrealScript/Classes directory with the name

MU_AutoTurret.uc to match the class name.

<<<< End of Tutorial >>>>

TUTORIAL 11.6 – TURRET, PART II: CLASS
VARIABLE DECLARATIONS

With the structs needed for the MU_AutoTurret class now declared, the class

variables can be declared. These variables are separated into two groups. The

first group is made up of variables which are solely used by the code within the

class and not available to the designer in UnrealEd. The second group will be

properties that the designer can use to customize the look and behavior of the

turret within UnrealEd. This tutorial covers the declarations of the first group of

non-editable variables.

1. Open ConTEXT and the MU_AutoTurret.uc script.

2. The turret needs to know what to shoot at in order to track it and fire. This

target is a Pawn and two separate references will be kept to the turret’s target.

One reference will be the current target the turret was tracking during the last

tick and the other is a reference to the new target the turret should track during

the current tick. The two references are necessary so that we can tell when the

target has changed from one tick to the next.

var Pawn EnemyTarget; //The new enemy the turr et should target

this tick

var Pawn LastEnemyTarget; //The enemy the turret was targeting

last tick

3. The turret must also keep track of the direction from the turret to the target

in order to know when the player has moved. As with the target, two references

will be kept to hold the direction vector during this tick as well as the direction

vector from the previous tick.

var Vector EnemyDir; //Vector from the turret' s base to the

enemy's location this tick

var Vector LastEnemyDir; //Vector from the turret 's base to the

enemy's location last tick

Figure 11.22 – As the target moves, the EnemyDir and LastEnemyDir

update.

4. In order to interpolate the rotation of the turret from its current orientation to

face the target, several pieces of information are necessary. These are listed

below.

• The beginning rotation of the turret’s pivot bone

• The desired rotation of the turret’s pivot bone

• The total time necessary to perform the rotation (based on the rotation

rate to be declared later)

• The amount of time elapsed since the interpolation began

• The alpha value (0.0 to 1.0) of the interpolation

Declare these variables now as follows:

var float TotalInterpTime; //Total time to interp olate rotation

var Float ElapsedTime; //Time spent in the cur rent

interpolation

var Float RotationAlpha; //Curret alpha for inter polating to a new

rotation

var Rotator StartRotation; //Beginning rotation f or interpolating

var Rotator TargetRotation; //Desired rotations f or interpolating

5. To cause the projectiles fired from the turret to spawn in the correct location

and orientation, two variables are used to hold the location and rotation in world

space of the socket located at the tip of the barrel of the turret.

var Vector FireLocation; //World position of the firing socket

var Rotator FireRotation; //World orientation of the firing socket

Figure 11.23 – An example FireLocation and FireRotation.

6. The rotation of the turret is based on a pivot bone, but the rotation of this

bone is not controlled directly. Instead, a SkelControlSingleBone is linked to the

pivot bone in the AnimTree assigned to the turret and the skeletal controller is

manipulated to control the rotation of the turret. Of course, this means a

reference to this skeletal controller is needed.

var SkelControlSingleBone PivotController; //T he skelcontrol

in the AnimTree

7. Two Bool variables hold the current status of the turret. The first named

bCanFire determines whether the turret is in a state where it can fire projectiles

at the target. The other named bDestroyed determines whether the turret has

been destroyed and should no longer target enemies.

var Bool bCanFire; //Is the turret in a firing state?

var Bool bDestroyed; //Has the turret been des troyed?

8. As you will see in the next tutorial, the health of the turret is configurable

within UnrealEd by the designer. A separate variable will hold the beginning

value of that property in order to have a reference to the maximum health the

turret can have.

var Int MaxTurretHealth; //Max health for this turret

9. A float variable named FullRevTime holds the amount of seconds necessary

for the turret to make a full revolution while rotating at its minimum rotation rate

as specified by a property that will show up in the next tutorial,

MinTurretRotRate.

var Float FullRevTime; //Seconds to make full rev at min rot rate

10. A Float variable named GElapsedTime holds the amount of time that has

passed since the last enemy locating update performed in the classes global

Tick() function. The G prefix is simply to indicate this is to be used in the global

Tick() function instead of any state Tick() functions.

var Float GElapsedTime; //Elapsed time since last global tick

11. An Int named OrigMinRotRate holds a reference to the initial value when the

match begins of one of the editable variables, MinTurretRotRate, that is declared

in the following tutorial.

var Int OrigMinRotRate; //Beginning value of MinT urretRotRate

12. The last few variables in this group are references to the

ParticleSystemComponents that display the damage, muzzle flash, and

destruction effects.

var ParticleSystemComponent DamageEffect; //PS ys component for

damage effects

var ParticleSystemComponent MuzzleFlashEffect; // PSys component

for muzzle flashes

var ParticleSystemComponent DestroyEffect; //P Sys component for

destruction effects

Figure 11.24 – Examples of a muzzle flash, damage, and destruction

effect.

13. Save the script to preserve your progress.

<<<< End of Tutorial >>>>

TUTORIAL 11.7 – TURRET, PART III: EDITABLE
VARIABLE DECLARATIONS

The second group of variables belonging to the MU_AutoTuret class consists of

the properties that are configurable by the designer inside of the Unreal Editor.

This section contains variables making use of the structs declared previously and

enables the turret class to be very flexible by allowing the designer to customize

the look and behavior of the turret without the need to alter the code in any way.

All of the variables declared in this tutorial will be declared as editable and placed

within the Turret category.

1. Open ConTEXT and the MU_AutoTurret.uc script.

2. You may have noticed the references to sockets and skeletal controllers in

previous tutorials which may have led you to the conclusion that the turret uses

a skeletal mesh as its display component. Pawns do already have a

SkeletalMeshComponent reference, but the turret class declares its own to be

displayed within the Turret category. In addition to a SkeletalMeshComponent for

display purposes, a DynamicLightEnvironmentComponent is used for lighting the

mesh more efficiently. A secondary skeletal mesh is also specified to be swapped

with the default mesh when the turret is destroyed.

var(Turret) SkeletalMeshComponent TurretMesh; //SkelMeshComp

for the turret

var(Turret) DynamicLightEnvironmentComponent LightE nvironment;

//For efficient lighting

var(Turret) SkeletalMesh DestroyedMesh; //destroyed

SkelMesh

3. A single instance of the TurretBoneGroup struct defined earlier is needed to

provide the names of the sockets and skeletal controller needed to control the

turret’s rotation and attach effects to.

var(Turret) TurretBoneGroup TurretBones; // Socke t, Controller

names

4. In addition to an instance of the TurretRotationGroup struct to set poses for

the turret, an instance of the RotationRange is used to set limits for rotations

round each axis as well as two Int variables to set the minimum and maximum

rotation rate the turret can achieve are necessary.

var(Turret) TurretRotationGroup TurretRotations; //Rotations

defining turret poses

var(Turret) RotationRange RotLimit; //Rotat ion limits for

turret

var(Turret) Int MinTurretRotRate; //Min Rot ation speed

Rot/Second

var(Turret) Int MaxTurretRotRate; //Max Rot ation speed

Rot/Second

5. The turret shoots projectiles and needs to know which class of projectile to

shoot. Also, the speed at which to shoot the projectiles is specified as the

number of rounds to shoot each second. In order to give a more realistic

representation of an actual turret, some variation in the aim of the turret is

introduced.

var(Turret) class<Projectile> ProjClass; //Typ e of projectile

the turret fires

var(Turret) Int RoundsPerSec; //Number o f rounds to fire

per second

var(Turret) Int AimRotError; //Maximum u nits of error in

turret aiming

Figure 11.25 – The same turret with varying RoundsPerSecond values.

6. An instance of the TurretEmitterGroup struct provides references to particle

systems to use for the damage, destruction, and muzzle flash effects.

var(Turret) TurretEmitterGroup TurretEmitters; // PSystems used by

the turret

7. Sounds for the turret are referenced within an instance of the

TurretSoundGroup struct.

var(Turret) TurretSoundGroup TurretSounds; //S ounds used for

turret behaviors

8. While Pawns have a Health property, the turret uses its own TurretHealth

property to keep all properties contained within the Turret group.

var(Turret) Int TurretHealth; //Initial amount of health for

the turret

9. Save the script to preserve your work.

<<<< End of Tutorial >>>>

TUTORIAL 11.8 – TURRET, PART IV: DEFAULT
PROPERTIES

For the final part of the MU_AutoTurret class setup, sub-objects need to be

created for the components used by the turret. Also in the default properties

block, default values must be set for the properties of the struct instances and

various other individual properties declared in the previous tutorial.

1. Open ConTEXT and the MU_AutoTurret.uc script.

2. Create the defaultproperties block

defaultproperties

{

}

3. The DynamicLightEnvirnmentComponent is fairly simple to create since it has

no properties which need be set. All the defaults will suffice. It is assigned to the

LightEnvironment variable and added to the Components array.

Begin Object Class=DynamicLightEnvironmentComponent

Name=MyLightEnvironment

End Object

LightEnvironment=MyLightEnvironment

Components.Add(MyLightEnvironment)

4. The SkeletalMeshComponent needs to be created, added to the Components

array and assigned to the TurretMesh variable of this class as well as the Mesh

variable inherited from the Pawn class. In addition, the SkeletalMesh,

AnimTreeTemplate, PhysicsAsset, and LightEnvirnment properties of the

component are set.

Begin Object class=SkeletalMeshComponent name=SkelM eshComp0

 SkeletalMesh=SkeletalMesh'TurretContent.TurretMe sh'

 AnimTreeTemplate=AnimTree'TurretContent.TurretAn imTree'

 PhysicsAsset=PhysicsAsset'TurretContent.TurretMe sh_Physics'

 LightEnvironment=MyLightEnvironment

End Object

Components.Add(SkelMeshComp0)

TurretMesh=SkelMeshComp0

Mesh=SkelMeshComp0

The assets assigned to the Skeletalmesh, AnimTreeTemplate, and PhysicsAsset

are located in the TurretContent package provided with the files for this chapter

on the DVD. These are only the defaults and can be replaced with your own

assets when placing a turret actor inside of the Unreal Editor to customize the

turret.

Figure 11.26 – The TurretMesh skeletal mesh from the TurretContent

package.

5. The ParticleSystemComponent subobjects for the MuzzleFlashEffect,

DestroyEffect, and DamageEffect are all very similar and can be done all at once.

The only deviation is with the DamageEffect’s component where the

SecondsBeforeInactive property will be set to a fairly high value of 10000.0,

instead of a value of 1.0 like the other two componenets, to ensure the

ParticleSystem continues playing at all times.

Begin Object Class=ParticleSystemComponent

Name=ParticleSystemComponent0

 SecondsBeforeInactive=1

End Object

MuzzleFlashEffect=ParticleSystemComponent0

Components.Add(ParticleSystemComponent0)

Begin Object Class=ParticleSystemComponent

Name=ParticleSystemComponent1

 SecondsBeforeInactive=1

End Object

DestroyedEffect=ParticleSystemComponent1

Components.Add(ParticleSystemComponent1)

Begin Object Class=ParticleSystemComponent

Name=ParticleSystemComponent2

 SecondsBeforeInactive=10000.0

End Object

DamageEffect=ParticleSystemComponent2

Components.Add(ParticleSystemComponent2)

6. The values of properties located within the TurretBones struct are set based

on the default SkeletalMesh and Animtree. These can be overridden within the

editor when using a different mesh or AnimTree.

TurretBones={(

 DestroySocket=DamageLocation,

 DamageSocket=DamageLocation,

 FireSocket=FireLocation,

 PivotControllerName=PivotController

)}

7. Again with the TurretSounds struct, default sounds from the UT3 assets are

assigned to each of the properties in the struct.

TurretSounds={(

 FireSound=SoundCue'A_Weapon_Link.Cue.A_Weapon_Li nk_FireCue',

DamageSound=SoundCue'A_Weapon_Stinger.Weapons.A_Wea pon_Stinger_FireI

mpactCue',

 SpinUpSound=SoundCue'A_Vehicle_Turret.Cue.AxonTu rret_PowerUpCue',

WakeSound=SoundCue'A_Vehicle_Turret.Cue.A_Turret_Tr ackStart01Cue',

SleepSound=SoundCue'A_Vehicle_Turret.Cue.A_Turret_T rackStop01Cue',

 DeathSound=SoundCue'A_Vehicle_Turret.Cue.AxonTur ret_PowerDownCue'

)}

8. One custom and two stock ParticleSystems along with the name of the

parameter controlling the spawn rate within the damage emitter are assigned to

the properties of the TurretEmitter struct.

TurretEmitters={(

 DamageEmitter=ParticleSystem'TurretContent.P_Tur retDamage',

MuzzleFlashEmitter=ParticleSystem'WP_Stinger.Partic les.P_Stinger_3P_

MF_Alt_Fire',

DestroyEmitter=ParticleSystem'FX_VehicleExplosions. Effects.P_FX_Vehi

cleDeathExplosion',

 DamageEmitterParamName=DamageParticles

)}

Figure 11.27 – The damage, muzzle flash, and destruction effect particle

systems.

9. Each of the rotations contained within the TurretRotations struct can be set

with default values for posing the default mesh.

TurretRotations={(

 IdleRotation=(Pitch=-8192,Yaw=0,Roll=0),

 AlertRotation=(Pitch=0,Yaw=0,Roll=0),

 DeathRotation=(Pitch=8192,Yaw=4551,Roll=10922)

)}

Figure 11.28 – The TurretMesh assuming the Idle, Alert, and Death

poses.

10. Finally, the various other properties such as the rotation rate, firing rate,

health, projectile class, aim error are all given default values. In addition one

inherited property is set here as well: bEdShouldSnap. This variable is given a

value of True to make the turret snap to the grid when placing instances of it

inside of UnrealEd.

TurretRotRate=128000

TurretHealth=500

AimRotError=128

ProjClass=class'UTGame.UTProj_LinkPowerPlasma'

RoundsPerSec=3

bEdShouldSnap=true

11. Save the script to preserve your progress.

<<<< End of Tutorial >>>>

TUTORIAL 11.9 – TURRET, PART V:
POSTBEGINPLAY() EVENT

Back in the MU_AutoTurret class, the PostBeginPlay() event will be overridden

and used to create the controller and initialize the turret.

1. OpenConTEXT and the MU_AutoTurret.uc scrpt.

2. Declare the PostBeingPlay() event so it can be overridden in the turret class.

event PostBeginPlay()

{

}

3. Call the AIController class’s PostBeginPlay() to make sure any basic

initialization present in the parent classes is performed.

Super.PostBeginPlay();

4. The MaxTurretHealth property is set to the beginning value of the

TurretHealth property. This is used later to determine the percentage of damage

done to the turret at any given time. Also, the value of OrigMinRotRate is

initialized to the value of MinTurretRotRate and the FullRevTime is calculated by

dividing one full revolution of rotator units by the MinTurretRotaRate..

MaxTurretHealth = TurretHealth;

OrigMinRotRate = MinTurretRotRate;

FullRevTime = 65536.0 / Float(MinTurretRotRate);

5. To initialize the PivotController variable, we need to find a reference to the

SkelControlSingleBone skeletal controller located within the AnimTree assigned

to the SkeletalMeshComponent. Passing the TurretBones.PivotControllerName

value to the component’s FindSkelControl() function and casting the result to a

SkelControlSingleBone accomplishes this.

PivotController=SkelControlSingleBone(Mesh.FindSkel Control(TurretBon

es.PivotControllerName));

Note: The code is using the Mesh variable to reference the

SkeletalMeshComponenet even though we declared the TurretMesh variable in

this class. If you’ll remember, the SkeletalMeshComponent was assigned to both

of these variables in the default properties so they both reference the same

component. The Mesh variable was chosen to be used in the code as it is shorter

and means less typing.

6. Next, the FireLocation and FireRotation variables are initialized by passing

them along with the TurretBones.FireSocket value to the

SkeletalMeshComponent’s GetSocketWorldLocationAndRotation() function.

Mesh.GetSocketWorldLocationAndRotation(TurretBones. FireSocket,FireLo

cation,FireRotation);

The second and third parameters of this function are declared using the Out

specifier, which as you know means that the function sets the values of these

variables that are passed into the function.

7. The ParticleSystems specified in the TurretEmitters struct are assigned as the

templates for the three ParticleSystemComponents for the damage, destroy, and

muzzle flash effects.

DamageEffect.SetTemplate(TurretEmitters.DamageEmitt er);

MuzzleFlashEffect.SetTemplate(TurretEmitters.Muzzle FlashEmitter);

DestroyEffect.SetTemplate(TurretEmitters.DestroyEmi tter);

8. The three ParticleSystemComponents are attached to the appropriate sockets

of the SkeletalMeshComponent using the AttachComponentToSocket() function

of the SkeletalMeshComponent

Mesh.AttachComponentToSocket(DamageEffect,

TurretBones.DamageSocket);

Mesh.AttachComponentToSocket(MuzzleFlashEffect,

TurretBones.FireSocket);

Mesh.AttachComponentToSocket(DestroyEffect,

TurretBones.DestroySocket);

Figure 11.29 – The particle systems attached to the locations of the

sockets in the skeletal mesh.

9. Finally, the Physics of the turret is set to PHYS_None so no physics is applied

to the turret.

SetPhysics(PHYS_None);

10. Save the script to preserve your work.

<<<< End of Tutorial >>>>

TUTORIAL 11.10 – TURRET, PART VI: ROTATION
FUNCTIONS

At various spoints in the turret script, the turret needs to be able to rotate to a

given rotation in order to assume the poses set in the Idle, Alert, and Death

rotations. To make this rotation look smooth and realistic, an interpolation is

used instead of directly setting the rotation causing a snapping effect. Two

functions are involved in this process. One function sets up all the necessary

properties and set a looping timer, while the other calculates the interpolated

rotation and adjusts the skeletal controller accordingly.

1. Open ConTEXT and the MU_AutoTurret.uc script.

2. The first function to be added is named DoRotation() and has a single Rotator

parameter named NewRotation.

function DoRotation(Rotator NewRotation, Float Inte rpTime)

{

}

3. The second function, a timer function, is named RotateTimer() and has no

parameters.

function RotateTimer()

{

}

4. First the DoRotation() function initializes the StartRotation, TargetRotation,

and RotationAlpha properties of the turret class.

StartRotation = PivotController.BoneRotation;

TargetRotation = NewRotation;

RotationAlpha = 0.0;

TotalInterpTime = InterpTime;

As you can see, the StartRotation is set to the current rotation of the turret

specified by the BoneRotation property of the skeletal controller in the AnimTree.

The TargetRotation is set to the NewwRotation passed to the function. Then, the

RotationAlpha is reset to 0.0 to begin the new interpolation and the

TotalInterpTime is set to the duration passed into the function.

5. Once the values have been initialized, a looping timer is set to call the

RotateTimer() function every 0.033 seconds, or 30 times a second.

SetTimer(0.033,true,'RotateTimer');

6. Inside the RotateTimer() function, the RotationAlpha is incremented by the

same value as the rate of the timer, 0.033.

RotationAlpha += 0.033;

7. If the RotationAlpha is less than or equal to TotalInterpTime, the interpolation

is calculated and the BoneRotation property is set with the new rotation.

if(RotationAlpha <= TotalInterpTime)

 PivotController.BoneRotation =

RLerp(StartRotation,TargetRotation,RotationAlpha,tr ue);

The RLerp() function defined in the Object class performs the interpolation

calculation based on the beginning rotation, ending rotation, and current alpha

values passed to the function. The final parameter, a Bool, specifies whether to

use the shortest distance to interpolate from the beginning rotation to the ending

rotation.

Figure 11.30 – Updating the BoneRotation of the skeletal controller

rotates the turret.

8. Otherwise, if the RotationAlpha value is greater than 1.0, signifying the

interpolation has finished, the timer is cleared.

else

 ClearTimer('RotateTimer');

9. Save the script to preserve your progress.

<<<< End of Tutorial >>>>

TUTORIAL 11.11 – TURRET, PART VII: STATE
DECLARATIONS

The turret class consists of four states defining the four different behaviors the

turret can assume. At this point, the states are declared as skeleton states, or

placeholders, simply to give you an idea of what exists. The bodies of these

states will be filled out in subsequent tutorials.

1. Open ConTEXT and the MU_AutoTurret.uc script.

2. The first state declared is the Idle state. This is the default initial state of the

turret. Its function is fairly self-explanatory: it causes the turret to idle or stand

by waiting for some outside event to occur which forces the turret into some

other state to take the appropriate action.

auto state Idle

{

}

Notice the use of the Auto specifier in the state’s declaration forcing the turret

into this state when the game begins.

3. The next state declared in the turret class is the Alert state. This state

represents an increase in alertness over the idle state, where the turret is

actively searching for any visible enemy to target and attack.

state Alert

{

}

4. The next state declared in the class is the Defend state. Once an enemy has

been found, the Defend state is entered. This state handles targeting the enemy

and firing projectiles.

state Defend

{

}

5. The final state declared in the turret class is the Dead state. This is also the

final state for the turret which it only enters after its health has reached 0. This

state handles all the destruction effects and ceases all other functionality such as

searching for, targeting, or firing at enemies.

state Dead

{

}

6. Save the script to preserve your progress.

<<<< End of Tutorial >>>>

TUTORIAL 11.12 – TURRET, PART VIII: GLOBAL
TAKEDAMAGE() FUNCTION

The turret we are creating is able to be damaged and even destroyed by the

players in the game. In order to handle this damaging ability, the TakeDamage()

function inherited from the parent class will be overridden. This tutorial will cover

the setup of this TakeDamage() function.

1. Open ConTEXT and the MU_AutoTurret.uc script.

2. The TakeDamage() event is inherited and is overridden in the turret class to

enable the turret to handle playing its damage effects and sounds as well as

making use of its TurretHealth variable in place of the inherited Health variable.

Declare this event to allow it to be overridden.

event TakeDamage(int Damage,

 Controller InstigatedBy,

 vector HitLocation,

 vector Momentum,

 class<DamageType> DamageType,

 optional TraceHitInfo HitInfo,

 optional Actor DamageCauser)

{

}

3. First, the TurretHealth property is adjusted by subtracting the value passed in

as the Damage parameter.

TurretHealth -= Damage;

4. Next, a check is performed to determine if the DamageEmitter exists and then

sets the value of the spawn rate parameter of the DamageEffect accordingly

using the SetFloatParam() function of the ParticleSystemComponent.

if(TurretEmitters.DamageEmitter != None)

{

DamageEffect.SetFloatParameter(TurretEmitters.Damag eEmitterParamName

,FClamp(1-Float(TurretHealth)/Float(MaxTurretHealth)),0.0,1.0));

}

The majority of the code above should be fairly self-explanatory. The parameter

name is passed to the SetFloatParameter() function as the first parameter and

the value to be assigned to that parameter is passed as the second parameter.

The parameter in the particle system is expecting a value between 0.0 and 1.0

representing the relative amount of damage done to the turret. This value is

mapped to a new range which determines the amount of particles to spawn each

second.

FClamp(1-Float(TurretHealth)/Float(MaxTurretHealth)),0.0,1.0)

This value is calculated by dividing the current health value by the initial

maximum health value to get a percentage of the turret’s health remaining. That

result is then subtracted from 1.0 to get the inverse percentage, or the

percentage of damage done. This is then clamped between 0.0 and 1.0 for good

measure.

Figure 11.31 – As the turret is damaged, the damage emitter spawns

more particles.

5. Any sound meant to be played when the turret is damaged is played using the

PlaySound() function after the damage effect is adjusted.

if(TurretSounds.DamageSound != None)

 PlaySound(TurretSounds.DamageSound);

6. As a defense mechanism, any Pawn who shoots at and damages the turret

becomes the turret’s enemy and is targeted. The InstigatedBy parameter is a

controller so its Pawn, if one exists, will become the new EnemyTarget of the

turret.

if(InstigatedBy.Pawn != None)

 EnemyTarget = InstigatedBy.Pawn;

Figure 11.32 – The Pawn which damages the turret becomes the new

EnemyTarget.

7. Finally, the turret is sent to the Dead state if its health has been exhausted.

if(TurretHealth <= 0)

{

 GotoState('Dead');

}

8. Save the script to preserve your work. We will return briefly to this function in

a subsequent tutorial.

TUTORIAL 11.13 – TURRET, PART IX: GLOBAL
TICK() FUNCTION

The turret class’s global Tick() function is responsible for finding visible enemies

for the turret to target and attack. This function exists outside of any state and is

used when the turret is in the Alert or Defend states.

1. Open ConTEXT and the MU_AutoTurret.uc script.

2. Declare the Tick() function following the states declared in the previous

chapter, making sure it is not inside the bodies of any of those states.

function Tick(Float Delta)

{

}

3. The Tick() function’s main responsibility is to pick a new enemy for the turret

by finding the player that is closest to the current aim of the turret. This will

require calculating the dot product of the direction the turret is aiming and the

direction to the player in question and comparing the result to that of each

subsequent player. Two local Float variables ware used to store the current dot

product and the current closest dot product.

local Float currDot;

local Float thisDot;

An iterator is used to loop through all the players in the match. This requires a

UTPawn local variable to hold a reference to each player in the iterator.

local UTPawn P;

Finally, a local Bool is used to specify whether a new enemy was found and set

as the target enabling the code to choose which state to place the turret into.

local Bool bHasTarget;

The result of each dot product operation is between -1 and 1. -1 being in the

exact opposite direction to where the turret is aiming and 1 being directly in the

turret’s aim. The currDot is initialized to a value of -1.01 so that the result of the

dot product for any player found will be higher than the initial value.

currDot = -1.01;

4. An If/Else-statement is used to cause the targeting to only be performed once

every 0.5 seconds and only if the turret has not been destroyed.

if(GElapsedTime > 0.5 && !bDestroyed)

{

}

else

{

}

Inside the If block, the values of GElapsedTime and bHasTarget are reset.

GElapsedTime = 0.0;

bHasTarget = false;

In the Else block, the value of GElapsedTime is incremented by the time passed

since the last Tick() function call.

GElapsedTime += Delta;

The If/Else-statement now looks like so:

if(GElapsedTime > 0.5 && !bDestroyed)

{

 GElapsedTime = 0.0;

 bHasTarget = false;

}

else

{

 GElapsedTime += Delta;

}

5. Back in the If Block, the AllPawns iterator function is used to loop through all

the UTPawns within the match currently.

foreach WorldInfo.AllPawns(class'UTGame.UTPawn',P)

{

}

6. As the condition to an If-statement within the iterator, a simple trace is

performed to determine if the turret has line of sight to the current pawn using

the FastTrace() function available to all Actors. This function returns True is no

world geometry was encountered when tracing to the end location from the start

location.

if(FastTrace(P.Location,FireLocation))

{

}

Figure 11.33 – Only the visible Pawns pass the FastTrace() check.

7. If the trace is successful, the dot product between the direction the turret is

aiming and the direction from the turret’s muzzle to the current pawn is

calculated.

thisDot = Normal(Vector(PivotController.BoneRotatio n)) Dot

Normal(((P.Location - FireLocation) << Rotation));

Figure 11.34 – The dot product calculates the amount to which the turret

is facing the prospective target.

8. Assuming the pawn is alive, or has a Health value greater than 0, and the dot

product we just calculated is greater than or equal to the currDot value, the

current pawn is set as the turret’s EnemyTarget, the currDot is set to this dot

product, and bHasTarget is set to True as at least one target has been located.

if(P.Health > 0 && thisDot >= currDot)

{

 EnemyTarget = P;

 currDot = thisDot;

 bHasTarget = true;

}

9. After the iterator, the turret is directed into the appropriate state based on the

outcome of the targeting routine. If a target was found and the turret is not

currently in the Defend state, it is placed into that state. Otherwise, if no target

was found and the turret is currently in the Defend state, it is sent to the Alert

state instead. All other conditions are ignored as the turret is already in the

appropriate state.

if(bHasTarget && !IsInState('Defend'))

{

 GotoState('Defend');

}

else if(!bHasTarget && IsInState('Defend'))

{

 GotoState('Alert');

}

10. Save the script to preserve your work. The final Tick() function should now

be:

function Tick(Float Delta)

{

 local Float currDot;

 local Float thisDot;

 local UTPawn P;

 local Bool bHasTarget;

 currDot = -1.01;

 if(GElapsedTime > 0.5 && !bDestroyed)

 {

 GElapsedTime = 0.0;

 bHasTarget = false;

 foreach WorldInfo.AllPawns(class'UTGame.UTPaw n',P)

 {

 if(FastTrace(P.Location,FireLocation))

 {

 thisDot = Normal(Vector(PivotController .BoneRotation))

Dot

 Normal(((P.Location - FireLocation) << Rotation));

 if(P.Health > 0 && thisDot >= currDot)

 {

 EnemyTarget = P;

 currDot = thisDot;

 bHasTarget = true;

 }

 }

 }

 if(bHasTarget && !IsInState('Defend'))

 {

 GotoState('Defend');

 }

 else if(!bHasTarget && IsInState('Defend'))

 {

 GotoState('Alert');

 }

 }

 else

 {

 GElapsedTime += Delta;

 }

}

<<<< End of Tutorial >>>>

TUTORIAL 11.14 – TURRET, PART X: IDLE STATE
BODY

As mentioned in a previous tutorial, the Idle state is the default state for the

turret. Its only real concerns are rotating the turret to the sleeping position,

locating moving enemies within its peripheral vision, and placing the turret into

the Alert state should it be damaged.

1. Open ConTEXT and the MU_AutoTurret.uc script.

2. Inside the Idle state, the TakeDamage() event is overridden, but we want to

still include all of the functionality of the global version. Essentially, we want to

append a small piece of code to the existing TakeDamage() event of the turret

class that applies only when the turret is in the Idle state. Obviously, we could

simply copy the entire event into the state and add what is needed, but

UnrealScript provides the ability to call the global version of the function or event

from within the state which will save us from having to duplicate code uselessly.

Declare the TakeDamage() event in the Idle state.

event TakeDamage(int Damage,

 Controller InstigatedBy,

 vector HitLocation,

 vector Momentum,

 class<DamageType> DamageType,

 optional TraceHitInfo HitInfo,

 optional Actor DamageCauser)

{

}

3. Using the Global keyword, immediately call the global version of the

TakeDamage() event passing all of the parameters straight through.

Global.TakeDamage(Damage,InstigatedBy,HitLocation,M omentum,DamageTyp

e,HitInfo,DamageCauser);

4. Now, add an If-statement that places the turret into the Alert state as long as

the turret has not been destroyed by the current damage being applied. All this

code really does is place the turret in the Alert state if it manages to get shot or

damaged without having an enemy targeted, i.e. if a player was able to sneak up

behind it and shoot it, the turret would awaken and start actively searching for

any visible enemy instead of only in its current periphery.

if(TurretHealth > 0)

{

 GotoState('Alert');

}

5. The Tick() event is overridden in the Idle state as well, but must actually alter

the existing version instead of appending to code onto it. While the global

version seeks out all visible enemies, the Idle state’s version will only seek out

moving enemies within its peripheral vision, defined here as having a dot product

greater than or equal to 0.0. This requires only a slight modification to the

existing Tick() event’s code so copy the global Tick() event in to the Idle state’s

body.

function Tick(Float Delta)

{

 local Float currDot,thisDot;

 local UTPawn P;

 local Bool bHasTarget;

 currDot = -1.01;

 if(GElapsedTime > 0.5 && !bDestroyed)

 {

 GElapsedTime = 0.0;

 bHasTarget = false;

 foreach WorldInfo.AllPawns(class'UTGame.UTPaw n',P)

 {

 if(FastTrace(P.Location,FireLocation))

 {

 thisDot = Normal(Vector(PivotController .BoneRotation))

Dot

 Normal(((P.Location - FireLocation) << Rotation));

 if(P.Health > 0 && thisDot >= currDot)

 {

 EnemyTarget = P;

 currDot = thisDot;

 bHasTarget = true;

 }

 }

 }

 if(bHasTarget && !IsInState('Defend'))

 {

 GotoState('Defend');

 }

 else if(!bHasTarget && IsInState('Defend'))

 {

 GotoState('Alert');

 }

 }

 else

 {

 GElapsedTime += Delta;

 }

}

6. Modify the innermost If-statement’s condition to require the speed of the

pawn to be greater than 16.0 units per second and also require the dot product

to be greater than or equal to 0.0.

if(P.Health > 0 && VSize(P.Velocity) > 16.0 && this Dot >= 0.0 &&

thisDot >= currDot)

{

 EnemyTarget = P;

 currDot = thisDot;

 bHasTarget = true;

}

Figure 11.35 – Only Pawns in front of the turret are considered as

potential targets.

7. A new function is declared in the Idle state named BeginIdling(). This function

must be able to be called as a timer so it has no parameters. Its job is to begin

the interpolation to the idle pose and play the SleepSound SoundCue.

function BeginIdling()

{

}

8. The interpolation to the idle pose is performed by calling the DoRotation()

function belonging to the turret class and passing it the IdleRotation property of

the TurretRotations struct and a duration of 1.0 seconds.

DoRotation(TurretRotations.IdleRotation, 1.0);

Figure 11.36 – The turret rotates to the Idle position.

9. If the SleepSound property of the TurretSounds struct references a SoundCue,

it is played using the PlaySound() function.

if(TurretSounds.SleepSound != None)

 PlaySound(TurretSounds.SleepSound);

10. As you have learned already, the BeginState() event is executed when the

state is made active. In the Idle state, this event starts the interpolation to the

alert pose if necessary and calls the BeginIdling() function to place the turret in

the idle pose and play the SleepSound SoundCue assuming one is specified.

Declare the BeginState() event with its one parameter PreviousStateName.

event BeginState(Name PreviousStateName)

{

}

11. First, if the previous state was anything other than the Alert state, the turret

should interpolate to the alert pose before beginning the interpolation to the idle

pose. This is simply the chosen behavior as it seemed reasonable that the turret

would always follow the same progression of idle-alert-firing-alert-idle. Since the

interpolation takes 1.0 second, the BeginIdling() function is called as a non-

looping timer with a rate of 1.0 seconds.

if(PreviousStateName != 'Alert')

{

 DoRotation(TurretRotations.AlertRotation, 1.0);

 SetTimer(1.0,false,'BeginIdling');

}

Figure 11.37 – The turret first rotates to the Alert position before

proceeding to the Idle position.

12. If the previous state was any other state, the BeginIdling() function is simply

called straight away.

else

 BeginIdling();

13. Save the script to preserve your work.

<<<< End of Tutorial >>>>

TUTORIAL 11.15 – TURRET, PART XI: ALERT
STATE BODY PART I

If the Idle state is like DEFCON 5 for the turret, then the Alert state is

somewhere around DEFCON 3. The turret is by no means in attack mode, but

this is most certainly an increased state of readiness. In the Alert stat, the turret

is now scanning the area and actively searching for any visible enemies: moving

or not. In this tutorial, the Tick() and IdleTimer() functions will be set up.

1. Open ConTEXT and the MU_AutoTurret.uc script.

2. The Tick() function is overridden in the Alert state to append a small chunk of

code onto the global Tick() function of the turret class. This chunk of code will

cause the turret to scan the area by animating its rotation. Declare the Tick()

function in the Alert state.

function Tick(Float Delta)

{

}

3. A local Rotator is needed in this Tick() function. This rotation is the amount of

rotation to be added to the turret’s current rotation each tick to animate the

turret scanning the area.

local Rotator AnimRot;

4. Before any other code in this function is executed, the global version of the

Tick() function is called.

Global.Tick(Delta);

5. The Yaw property of the AnimRot is calculated by multiplying the

MinTurretRotRate by the time passed since the last tick, or Delta. Then, this

Rotator is added to the turret’s rotation specified as the BoneRotation property of

the PivotController.

AnimRot.Yaw = MinTurretRotRate * Delta;

PivotController.BoneRotation += AnimRot;

Figure 11.38 – The turret scans the area by rotating around the Yaw axis

of the pivot.

6. The final piece of the Tick() function is to account for any rotation limiting

according to the RotLimit struct. If the blimitYaw property is True and the Yaw of

the current rotation is outside the limits set in the RotLimitMin and RotLimitMax

Rotators, the MinTurretRotrate value is multiplied by -1 to reverse the direction

of the turret’s rotation.

if(RotLimit.bLimitYaw)

{

 if(PivotController.BoneRotation.Yaw >=

RotLimit.RotLimitMax.Yaw ||

 PivotController.BoneRotation.Yaw <= RotLimit. RotLimitMin.Yaw

)

 {

 MinTurretRotRate *= -1;

 }

}

Figure 11.39 – The scanning rotation is now limited causing it to

alternate back and forth.

7. The IdleTimer() function is a simple timer function that is declared with no

parameters.

function IdleTimer()

{

}

8. This function’s sole purpose is to place the turret back into the Idle state if it

has not been destroyed.

if(!bDestroyed)

{

 GotoState('Idle');

}

9. Save the script to preserve your work.

<<<< End of Tutorial >>>>

TUTORIAL 11.16 – TURRET, PART XII: ALERT
STATE BODY PART II

Continuing with the Alert state, the BeginState() event handles initializing the

turret for the Alert. Though it provides the ability to perform separate actions

based on the previous state by means of the PreviousStateName parameter, the

initialization of the Alert state will be the same regardless of which state the

turret is leaving. This function will place the turret into the appropriate pose to

begin scanning the area and calculate the amount of time necessary to do a

thorough sweep as well as determine which direction the turret should begin

rotating to perform the sweep.

1. Open ContEXT and the MU_AutoTurret.uc script.

2. Declare the BeginState() event for the Alert state.

event BeginState(Name PreviousStateName)

{

}

3. This event needs two local variables. The first is a Rotator to hold the initial

rotation the sweep should begin from. This rotation is the rotation specified in

the AlertRotation property of the TurretRotations struct with its Yaw value

substituted with the current Yaw of the turret. The other local variable is a Float

value representing the amount of total time the turret’s sweep of the area will

last.

local Rotator AlertRot;

local Float RevTime;

4. The AlertRot rotation is first assigned the value of the AlertRotation. Then its

Yaw value is replaced with the current Yaw of the turret normalized to the range

of 0 to 65536, removing any full revolutions that may have been performed up

to this point.

AlertRot = TurretRotations.AlertRotation;

AlertRot.Yaw = PivotController.BoneRotation.Yaw % 6 5536;

5. One of two paths is taken at this point depending on whether the turret’s Yaw

rotation is limited. If the Yaw is limited, determined by the bLimitYaw property of

the RotLimit struct, the limits must be taken into account when calculating the

total time to perform a sweep of the area. This sweep will consist of panning

from the current yaw to the far limit, back to the near limit and then to the Yaw

specified by the AlertRotation. First, set up the If-statement.

if(RotLimit.bLimitYaw)

{

}

else

{

}

6. Inside the If block, another If-statement checks to see which limit is farther

by comparing the current Yaw value to the midpoint of the Yaw rotation limits.

if(AlertRot.Yaw > Float(RotLimit.RotLimitMax.Yaw +

RotLimit.RotLimitMin.Yaw) / 2.0)

{

}

else

{

}

The time it takes to make the full sweep given the current rotation of the turret

is calculated by taking the difference between the far limit and the current

rotation and dividing that value by the original minimum rotation rate of the

turret. Then the amount of time it takes to make one complete sweep from the

minimum limit to the maximum limit is calculate using the same method and

added to the previous calculation. Finally, the time to pan from the far limit to

the AlertRotation is calculated and added to the overall result. This value is

assigned to the RevTime variable in each of the If/Else blocks. The only

differences in the calculations are that the limits are reversed and the order of

the subtraction operands is reversed.

if(AlertRot.Yaw > Float(RotLimit.RotLimitMax.Yaw +

RotLimit.RotLimitMin.Yaw) / 2.0)

{

 RevTime = (Float(AlertRot.Yaw - RotLimit.RotLimi tMin.Yaw) /

Float(OrigMinRotRate)) +

 (Float(RotLimit.RotLimitMax.Yaw - RotLimit.Ro tLimitMin.Yaw) /

Float(OrigMinRotRate)) +

 (Float(RotLimit.RotLimitMax.Yaw -

TurretRotations.AlertRotation.Yaw) / Float(OrigMinR otRate));

}

else

{

 RevTime = (Float(RotLimit.RotLimitMax.Yaw - Aler tRot.Yaw) /

Float(OrigMinRotRate)) +

 (Float(RotLimit.RotLimitMax.Yaw - RotLimit.Ro tLimitMin.Yaw) /

Float(OrigMinRotRate)) +

 (Float(TurretRotations.AlertRotation.Yaw -

RotLimit.RotLimitMin.Yaw) / Float(OrigMinRotRate));

}

The MinTurretRotRate is set to either the OrrigTurretRotRate or the

OrigTurretRotRate multiplied by -1 depending on which way the turret needs to

rotate to begin with.

if(AlertRot.Yaw > Float(RotLimit.RotLimitMax.Yaw +

RotLimit.RotLimitMin.Yaw) / 2.0)

{

 RevTime = (Float(AlertRot.Yaw - RotLimit.RotLimi tMin.Yaw) /

Float(OrigMinRotRate)) +

 (Float(RotLimit.RotLimitMax.Yaw - RotLimit.Ro tLimitMin.Yaw) /

Float(OrigMinRotRate)) +

 (Float(RotLimit.RotLimitMax.Yaw -

TurretRotations.AlertRotation.Yaw) / Float(OrigMinR otRate));

 MinTurretRotRate = -1 * OrigMinRotRate;

}

else

{

 RevTime = (Float(RotLimit.RotLimitMax.Yaw - Aler tRot.Yaw) /

Float(OrigMinRotRate)) +

 (Float(RotLimit.RotLimitMax.Yaw - RotLimit.Ro tLimitMin.Yaw) /

Float(OrigMinRotRate)) +

 (Float(TurretRotations.AlertRotation.Yaw -

RotLimit.RotLimitMin.Yaw) / Float(OrigMinRotRate));

 MinTurretRotRate = OrigMinRotRate;

}

Figure 11.40 – One potential scanning motion of the Yaw-limited turret.

7. The main Else block in the BeginAlert() function is much more straightforward

because no limits are being imposed. In this situation, the turret will rotate the

long way around from its current rotation back to the AlertRotation. First off, the

RevTime is initialized with the FullRevTime value.

RevTime = FullRevTime;

Next, the current rotation is compared to the AlertRotation to determine which

direction the turret needs to rotate. Half a revolution is added to the

AlertRotation’s Yaw property. By checking the current rotation against that value,

the turret can be narrowed down to facing one hemisphere or the other.

if(AlertRot.Yaw > (TurretRotations.AlertRotation.Ya w + 32768))

{

}

else

{

}

The amount of time to be removed from the full revolution time is calculated by

taking the difference between the current rotation and either the AlertRotation or

one full revolution from the AlertRotation. That value is then divided by the

OrigTurretRotRate. The subtractions in these calculations should be performed in

an order such that the results are negative values as the point of the calculations

is to find the portion of the full revolution that needs to be omitted based on the

current rotation.

if(AlertRot.Yaw > (TurretRotations.AlertRotation.Ya w + 32768))

{

 RevTime += Float(AlertRot.Yaw -

(TurretRotations.AlertRotation.Yaw + 65536)) /

 Float(OrigMinRotRate);

}

else

{

 RevTime += Float(TurretRotations.AlertRotation.Y aw -

AlertRot.Yaw) /

 Float(OrigMinRotRate);

}

The MinTurretRotRate value is set just as in the previous step.

if(AlertRot.Yaw > (TurretRotations.AlertRotation.Ya w + 32768))

{

 RevTime += Float(AlertRot.Yaw -

(TurretRotations.AlertRotation.Yaw + 65536)) /

 Float(OrigMinRotRate);

 MinTurretRotRate = -1 * OrigMinRotRate;

}

else

{

 RevTime += Float(TurretRotations.AlertRotation.Y aw -

AlertRot.Yaw) /

 Float(OrigMinRotRate);

 MinTurretRotRate = OrigMinRotRate;

}

Figure 11.41 – One potential scanning motion of the non-limited turret.

8. After the RevTime and MinTurretRotrate have been set by one of these four

routines, a timer is set outside of all the If-statements to run the IdleTimer()

function. The rate of the timer is the RevTime + 1.0 seconds to account for the

initial rotation to the AlertRot pose.

SetTimer(RevTime + 1.0,false,'Idletimer');

9. Once the timer has been set, an interpolation to the AlertRot is started by

using the DoRotation() function.

DoRotation(AlertRot, 1.0);

10. Finally, the WakeSound SoundCue is played if one has been specified.

if(TurretSounds.WakeSound != None)

 PlaySound(TurretSounds.WakeSound);

11. Save the script to preserve your progress.

<<<< End of Tutorial >>>>

TUTORIAL 11.17 – TURRET, PART XIII: DEFEND
STATE BODY PART I

The firing functionality of the turret is handled by two functions. The first

function named TimedFire() spawns the projectile, activates the muzzle flash,

and plays the firing sound. The second function named StopMuzzleFlash() simply

deactivates the muzzle flash as you might expect from the name. The creation of

these two function is covered in this tutorial.

1. Open ConTEXT and the MU_AutoTurret.uc script.

2. The StopMuzzeFlash() function is extremely simple so we begin with it.

Declare this function inside the body of the Defend state with no parameters.

function StopMuzzleFlash()

{

}

3. The muzzle flash particle system is stopped by calling the DeactivateSystem()

function of the ParticleSystemComponent. This is the entire body of the

StopMuzzleFlash() function.

MuzzleFlashEffect.DeactivateSystem();

4. The TimedFire() function is a timer function that will be set to loop when the

turret begins the Defend state and will be cleared when the turret leaves the

Defend state. Declare this function now.

function TimedFire()

{

}

5. A local Projectile variable is needed to reference the spawned projectile.

local Projectile Proj;

6. The projectile is spawned using the class specified in the ProjClass variable at

the FireLocation using the orientation obtained from the FireRotation variable

and assigned to the Proj local variable.

Proj = Spawn(ProjClass,self,,FireLocation,FireRotat ion,,True);

7. If the spawn was successful and the projectile is not about to be deleted, the

Init() function of the projectile is called passing it the direction the projectile

should be traveling. This function sets the rotation of the projectile according by

casting the direction Vector passed to the function and initializes its Velocity

accordingly.

if(Proj != None && !Proj.bDeleteMe)

{

 Proj.Init(Vector(FireRotation));

}

Note: This code was borrowed directly from one of the existing UT3 weapon

classes. It is always a good idea to use similar existing classes as models when

writing new code.

Figure 11.42 – The projectile is spawned and initialized with velocity in

the direction the turret is aiming.

8. Next, the muzzle flash is activated and a timer to shut off the muzzle flash is

started assuming a muzzle flash emitter is specified.

if(TurretEmitters.MuzzleFlashEmitter != None)

{

 MuzzleFlashEffect.ActivateSystem();

SetTimer(TurretEmitters.MuzzleFlashDuration,false,' StopMuzzleFlash')

;

}

Figure 11.43 – When activated, the muzzle flash effect becomes visible.

9. Finally, the firing sound is played if specified by the designer.

if(TurretSounds.FireSound != None)

 PlaySound(TurretSounds.FireSound);

10. The BeginFire() function is a timer function that starts the firing process by

setting a looping timer for the TimedFire() function and enables the targeting

process by toggling the bCanFire variable. Declare this function.

function BeginFire()

{

}

11. If the value of RoundsPerSec is greater than 0, the TimedFire() function is

set to execute with a rate calculated as the inverse of the RoundsPerSec property

and set to loop. Also, the bCanFire property is set to True.

if(RoundsPerSec > 0)

{

 SetTimer(1.0/RoundsPerSec,true,'TimedFire');

 bCanFire = true;

}

12. Save the script to preserve your work.

<<<< End of Tutorial >>>>

TUTORIAL 11.18 – TURRET, PART XIV: DEFEND
STATE BODY PART II

Continuing with the Defend state, the BeginState() and EndState() events are

declared to initialize and terminate the Defend state.

1. Open ConTEXT and the MU_AutoTurret.uc script.

2. Declare the BeginState() event with the PreviousStateName parameter.

event BeginState(Name PreviousStateName)

{

}

3. If the turret is entering the Defend state from the Alert state, the IdleTimer

must be cleared if it is currently active to prevent the turret from inadvertently

being placed into the Idle state.

if(PreviousStateName == 'Alert')

{

 if(IstImerActive('IdleTimer'))

 ClearTimer('IdleTimer');

}

4. The bCanFire property is always initially set to False to avoid any unwanted

targeting actions.

bCanFire = false;

5. Also in the BeginState() event, the FireLocation and FireRotation properties

are initialized with the current location and rotation of the socket located at the

muzzle tip by calling the GetSocketWorldLocationAndRotation() function of the

SkeletalMeshComponent and passing it the two variables.

Mesh.GetSocketWorldLocationAndRotation(TurretBones. FireSocket,FireLo

cation,FireRotation);

6. Next, the turret interpolates to face the current enemy using the DoRotation()

function.

DoRotation(Rotator((EnemyTarget.Location - FireLoca tion) <<

Rotation), 1.0);

The calculation below takes the vector from the muzzle tip to the enemy and

transforms that into world space. Then, the resulting Vecotr is cast to a Rotator

to get the rotation necessary to cause the turret to point at the enemy.

Rotator((EnemyTarget.Location - FireLocation) << Ro tation)

Figure 11.44 – The turret is rotated to face the EnemyTarget.

7. The SpinUpSound is played if one has been specified by the designer

if(TurretSounds.SpinUpsound != None)

 PlaySound(TurretSounds.SpinUpSound);

8. The final step in the BeginState() event is to start a timer to execute the

BeginFire() function after 1.0 second has passed. This allows the turret to

complete the rotation interpolation before any targeting of firing begins.

SetTimer(1.0,false,'BeginFire');

9. The EndState() event is very similar to the BeginState() event in its

declaration as it has only a single Name parameter.

event EndState(Name NewStateName)

{

}

10. The sole purpose of this event in the Defend state is to clear the TimedFire()

timer to stop the turret from firing.

ClearTimer('TimedFire');

11. Save the script to preserve your progress.

<<<< End of Tutorial >>>>

TUTORIAL 11.19 – TURRET, PART XV: DEFEND
STATE BODY PART III

The final piece to the Defend state is the targeting code contained within the

Tick() function of the state.

1. Open ConTEXT and the MU_AutoTurret.uc script.

2. Declare the Tick() function in the Defend state.

function Tick(Float Delta)

{

}

3. This version of the Tick() function needs two local Rotators to perform

targeting calculations with as well as a local Int.

local Rotator InterpRot;

local Rotator DiffRot;

local Int MaxDiffRot;

4. Before any new code is added, the global implementation of the Tick()

function needs to be called so that the target acquisition code is still executed

even though the function is being overridden.

Global.Tick(Delta);

5. The targeting code within the Tick() function is only to be executed when the

turret is allowed to fire.

if(bCanFire)

{

}

6. Inside the If-statement, A direction Vector to from the turret to the enemy is

calculated. This is calculated every tick to keep track of the enemy’s movement.

EnemyDir = EnemyTarget.Location - Location;

Figure 11.45 – EnemyDir is the direction from the turret to the

EnemyTarget.

7. Next, if any of the following conditions are met, all of the targeting variables

are initialized or reset.

• A new enemy has been acquired

Figure 11.46 – The turret has a new EnemyTarget.

• The current enemy has moved

Figure 11.47 – The turret’s EnemyTarget is on the move.

• The current targeting interpolation has completed

Figure 11.48 – The turret has rotated to face the stationary

EnemyTarget.

if(EnemyTarget != LastEnemyTarget ||

 EnemyDir != LastEnemyDir ||

 ElapsedTime >= TotalInterpTime)

{

}

a. First, the LastEnemyTarget and LastEnemyDir variables are updated with the

current values.

LastEnemyDir = EnemyDir;

LastEnemyTarget = EnemyTarget;

b. Next, the beginning and ending rotation values for the interpolation are

initialized.

StartRotation = PivotController.BoneRotation;

TargetRotation = Rotator((EnemyTarget.Location - Fi reLocation) <<

Rotation);

c. Then, the DiffRot is calculated by taking the difference between the beginning

and ending rotations. The MaxDiffRot is then calculated by finding the largest

element, Pitch, Yaw, or Roll, of the resulting DiffRot. Two Max() function calls are

nested to perform this calculation in a single expression.

DiffRot = TargetRotation - StartRotation;

MaxDiffRot = Max(Max(DiffRot.Pitch,DiffRot.Yaw),Dif fRot.Roll);

d. The total time needed to interpolate to the desired rotation is calculated by

dividing the MaxDiffRot by the MaxTurretRotRate and taking the absolute value

of that result.

TotalInterpTime = Abs(Float(MaxDiffRot) / Float(Max TurretRotRate));

e. Finally, the ElapsedTime is set equal to the time passed since the last tick.

ElapsedTime = Delta;

The resulting If block:

if(EnemyTarget != LastEnemyTarget ||

 ElapsedTime >= TotalInterpTime ||

 EnemyDir != LastEnemyDir)

{

 LastEnemyDir = EnemyDir;

 LastEnemyTarget = EnemyTarget;

 StartRotation = PivotController.BoneRotation;

 TargetRotation = Rotator((EnemyTarget.Location - FireLocation) <<

Rotation);

 DiffRot = TargetRotation - StartRotation;

 MaxDiffRot = Max(Max(DiffRot.Pitch,DiffRot.Yaw), DiffRot.Roll);

 TotalInterpTime = Abs(Float(MaxDiffRot) /

Float(MaxTurretRotRate));

 ElapsedTime = Delta;

}

8. Otherwise, the elapsed time of the current interpolation is incremented

else

{

 ElapsedTime += Delta;

}

9. Once all the variables needed for the interpolation have been set, the current

alpha for the interpolation is calculated and the interpolation is performed with

the result being assigned to the InterpRot local Rotator.

RotationAlpha = FClamp(ElapsedTime / TotalInterpTim e,0.0,1.0);

InterpRot = RLerp(StartRotation,TargetRotation,Rota tionAlpha,true);

Figure 11.49 – The turret is rotated a portion of the way towards the

final desired rotation each tick.

10. The resulting rotation is limited by any rotational limits that may be

implemented by the designer.

if(RotLimit.bLimitPitch)

 InterpRot.Pitch = Clamp(InterpRot.Pitch,

 RotLimit.RotLimitMin.Pitch,

 RotLimit.RotLimitMax.Pitch);

if(RotLimit.bLimitYaw)

 InterpRot.Yaw = Clamp(InterpRot.Yaw,

 RotLimit.RotLimitMin.Yaw,

 RotLimit.RotLimitMax.Yaw);

if(RotLimit.bLimitRoll)

 InterpRot.Roll = Clamp(InterpRot.Roll,

 RotLimit.RotLimitMin.Roll,

 RotLimit.RotLimitMax.Roll);

11. The final interpolated rotation is assigned to the PivotController’s

BoneRotation to update te turret.

PivotController.BoneRotation = InterpRot;

12. The firing location and rotation variables are updated with the new

orientation of the turret.

Mesh.GetSocketWorldLocationAndRotation(TurretBones. FireSocket,FireLo

cation,FireRotation);

13. Finally, the new firing rotation is adjusted with a random aim error.

FireRotation.Pitch += Rand(AimRotError * 2) - AimRo tError;

FireRotation.Yaw += Rand(AimRotError * 2) - AimRotE rror;

FireRotation.Roll += Rand(AimRotError * 2) - AimRot Error;

A random integer between 0 and twice the AimRotError value is calculated. The

resulting value is then offset by the AimRotError, effectively producing a random

value between –AimRotError and AimRotError. This random value is added to

each component of the FireRotation.

Figure 11.50 – The variation in the trajectories of these projectiles is

due to the turret’s aim being randomly offset.

14. Save the script to preserve your work.

<<<< End of Tutorial >>>>

TUTORIAL 11.20 – TURRET, PART XVI: DEAD
STATE BODY

The final state belonging to the turret class is the Dead state. This state is

responsible for performing all destruction effects as well as making sure no more

target acquisition or damage functionality is performed.

1. Open ConTEXT and the MU_AutoTurret.uc script.

2. The Tick() and TakeDamage() functions are going to be ignored in this state

so they will no longer be executed .

ignores Tick, TakeDamage;

3. The PlayDeath() function is a timer function that handles the playing of the

destruction effects.

function PlayDeath()

{

}

4. In the PlayDeath() function, the destroy particle effect is played if one has

been set by the designer

if(TurretEmitters.DestroyEmitter != None)

 DestroyEffect.ActivateSystem();

Figure 11.51 – The default destruction effect being activated.

5. The death sound is slap played if one exists.

if(TurretSounds.DeathSound != None)

 PlaySound(TurretSounds.DeathSound);

6. The DestroyedMesh is set as the new skeletal mesh of the turret if one has

been chosen by the designer.

if(DestroyedMesh != None)

 Mesh.SetSkeletalMesh(DestroyedMesh);

7. Lastly, the damage particle effect is deactivated if

bStopDamageEmmiterOnDeath has been set.

if(TurretEmitters.bStopDamageEmitterOnDeath)

 DamageEffect.DeactivateSystem();

8. In the event that the bRandomDeath variable has been set to True, the turret

must create a random rotation taking any rotational limits into account and

interpolate to that rotation. The DoRandomDeath() function handles this

functionality.

function DoRandomDeath()

{

}

9. A local Rotator named DeathRot is used to hold the random rotation.

local Rotator DeathRot;

10. The RotRand() function is used to calculate a random rotation. A value of

True is passed to the function to include the Roll component. The resulting

rotation is assigned to the DeathRot variable.

DeathRot = RotRand(true);

11. The components of the new rotation are then clamped according to any

rotational limits that have been set.

if(RotLimit.bLimitPitch)

 DeathRot.Pitch = Clamp(DeathRot.Pitch,

 RotLimit.RotLimitMin.Pitch,

 RotLimit.RotLimitMax.Pitch);

if(RotLimit.bLimitYaw)

 DeathRot.Yaw = Clamp(DeathRot.Yaw,

 RotLimit.RotLimitMin.Yaw,

 RotLimit.RotLimitMax.Yaw);

if(RotLimit.bLimitRoll)

 DeathRot.Roll = Clamp(DeathRot.Roll,

 RotLimit.RotLimitMin.Roll,

 RotLimit.RotLimitMax.Roll);

12. Finally, the DoRotation() function is called passing it the limited DeathRot to

interpolate the turret to the new rotation.

DoRotation(DeathRot, 1.0);

Figure 11.52 – The turret assumes a random rotation.

13. The BeginState() event is used in the Dead state to initiate the previous two

functions.

event BeginState(Name PreviousSateName)

{

}

14. First, the bDestroyed variable is set to identify the turret as having been

destroyed.

bDestroyed = true;

15. If a random death rotation is not to be used, the DoRotation() function is

called passing it the DeathRotation specified in the TurretRotations struct.

if(!TurretRotations.bRandomDeath)

 DoRotation(TurretRotations.DeathRotation, 1.0);

Otherwise, the DoRandomDeath() function is called.

else

 DoRandomDeath();

Figure 11.53 – The turret rotates to the DeathRotation.

16. Then, a timer is set to execute the PlayDeath() function after the

interpolation to the new rotation has completed.

SetTimer(1.0,false,'PlayDeath');

17. Save the script to preserve your work.

<<<< End of Tutorial >>>>

TUTORIAL 11.21 TURRET, PART XVII –
COMPILING AND TESTING

With all the code for the turret in place, the script can now be compiled and

tested inside of UnrealEd.

1. Copy the TurretContent.upk file provided on the DVD with the files for this

chapter to the Unpublished\CookedPC directory

2. Compile the scripts and fix any syntax errors that may be present.

3. Open UnrealEd and the DM-CH_11_Turret.ut3 map provided with the files for

this chapter. This map may look familiar as it is a slightly modified version of the

test map that has been used extensively throughout the book.

Figure 11.54 – The DM-CH_11_Turret map.

4. Open the Generic Browser and go to the Actor Classes tab. Expand the Pawn

section and choose MU_AutoTurret from the list.

Figure 11.55 – The MU_AutoTurret class in the Actor Browser.

5. Right-click in the perspective viewport and choose Add MU_AutoTurret Here.

The turret actor should appear in the map. Rotate the turret 180 degrees around

the X-axis, or by adjusting the Movement->Rotation->Roll property in the

Properties Window, so the turret is upside down. Position it on the ceiling of the

room with the 3 PlayerStarts near the back of the room.

Figure 11.56 – The turret actor is positioned in the map.

6. With the turret actor selected, press F4 to open the Properties Window.

Expand the Turret category to view the editable properties. Feel free to make

any adjustments you wish to make, though the defaults should work fine for

initial testing purposes.

7. Rebuild the map by pressing the Rebuild All button on the toolbar. Then right-

click in the adjacent empty room and choose Play From Here.

8. Open the console by pressing Tab and enter ‘ghost’ to allow you to fly through

the map and avoid being damaged by the turret. Move into the room with the

turret. The turret should begin targeting you and firing.

Figure 11.57 – The turret is firing on the player.

9. To get a better view of the turret in action, open the console again and enter

‘addbots 3’ to add three bots to the map. The turret should begin targeting and

firing on the new bots in the map. You may have to move yourself out of the

room and then back into it for the turret to choose a new enemy.

Figure 11.58 – A bot is being fired upon by the turret.

10. Exit the map by pressing the Esc key. Play around with the properties, such

as the RotLimit rotations, and continue testing the map to make sure everything

seems to be working as intended.

11. Save the map under a new name if you wish to save your setup.

Over the course of the turret tutorials, you have seen an example of how states

can be used to cause an actor to behave differently under different

circumstances. At the same time, the basic functionality of creating a completely

new weapon was implemented along with showing you how to manipulate bones

through the use of skeletal controllers inside of an AnimTree.

<<<< End of Tutorial >>>>

TUTORIAL 11.22 – UTBOT_PELLET CLASS SETUP

When constructing the UTPElletGame gametype in the previous chapter, it was

mentioned that we would be tackling creating custom bots to use with the new

gametype. In this tutorial we will begin the process of setting up those custom

bots by declaring the UTBot_Pellet class.

1. Open ConTEXT and create a new file using the UnrealScript highlighter.

2. Declare the UTBot_Pellet class extending from the UTBot class. This will give

us a solid functioning base from which to build.

class UTBot_Pellet extends UTBot;

3. This new class will need a few class variables in order to implement the new

functionality.

var Actor CurrentGoal;

This will hold a reference to the final destination the bot will be navigating

towards, which will either be some type of pellet or some player depending on

which navigational state the bot is currently in.

var Bool bResetMove;

This Bool variable will be used to cause a bot currently navigating towards a

pellet to choose a new pellet to navigate to. This is used when another player

collects the pellet before the bot reaches it.

var Float HPDistanceThreshold;

This value specifies how close a HyperPellet needs to be in order for it to

overtake other pellets in precendence.

var Float MinAggressiveness;

var Float MaxAggressiveness;

These two values will represent a range from which to select a random value to

be used for the Aggressiveness property of the bots. This will give a small

amount of variation to th behavior of the bots.

4. Moving on to the default properties block, we can set some default values for

some of the variables that were just declared.

defaultproperties

{

}

Add the defaultproperties block.

MinAggressiveness=0.25

MaxAggressiveness=0.85

Values of 0.25 to 0.85 will give a nice range with no extremes to the bots for

their Aggressiveness.

HPDistanceThreshold=512

This value will force bots only to go directly after a HyperPellet and ignore all

other pellets if one is within 512 units of the bot’s current location.

5. Now the PostBeginPlay() function will be overridden to enable the

Aggressiveness variable to be set using the range of MinAggressiveness and

MaxAggressiveness instead of the current way the UTBot class handles it.

Declare the PostbEginPlay() function now.

function PostBeginPlay()

{

}

6. Next, the UTBot class’s PostBeginPlay() function needs to be called before

anything else is done using the Super keyword.

Super.PostBeginPlay();

7. Then set the Agressiveness variable to a random value within the range

specified by the MinAggressiveness and MaxAggressiveness variables using the

RandRange() function.

Aggressiveness = RandRange(MinAggressiveness, MaxAg gressiveness);

8. Save the script in the MasteringUnrealScript/Classes directory with the name

UTBot_Pellet.uc.

<<<< End of Tutorial >>>>

TUTORIAL 11.23 – PELLETCOLLECTING STATE,
PART I: FINDNEWGOAL() FUNCTION

The behavior of the bot will be determined by which state the bot is currently in.

The first state that will be added to the UTBot_Pellet class is the PelletCollecting

state. This state causes the bot to navigate the path network in search of pellets.

The behavior of the bot within the PelletCollecting state can essentially be broken

down into the following actions. First the bot chooses a destination. Then, the

bot moves toward that destination. Once the bot arrives at the destination, it

chooses a new destination and repeats the process.

1. Open ConTEXT and the UTBot_Pellet script.

2. Declare the new PelletCollecting state.

auto state PelletCollecting

{

}

Notice that the auto keyword was used when declaring the state to force the bot

to begin in the PelletCollecting state.

3. The choosing of a destination will be handled by a function named

FindNewGoal(). Declare this new function inside of the PelletCollecting state

block.

function FindNewGoal()

{

}

4. This function makes use of several local variables.

local Pellet CurrPellet;

This holds a reference to the current pellet as the Pellets array belonging to the

PelleInfo of the UTPelletGame class is iterated over.

local Float Distance;

This holds the distance of the closest pellet found thus far.

local Float currDistance;

This holds the distance of the current pellet from the bot.

local Bool bGoalIsHP;

This Bool’s value specifies whether or not the CurrentGoal references a

HyperPellet.

local Bool bCurrIsHP;

This Bool’s value specifies whether or not the current pellet in the iteration is a

HyperPellet.

5. First, the bot is checked to see that it is controlling a Pawn. Execution is only

allowed to continue if the Pawn variable has a reference assigned to it.

if(Pawn == None)

 return;

6. Next, we set the value of Distance to some large value to use when comparing

the distances of each pellet during the iteration and remove any references

assigned to the CurrentGoal so that we ensure a new CurrentGoal is chosen.

Distance = 1000000.0;

CurrentGoal = None;

7. Set up the iterator to loop through the Pellets array belonging to the PelletInfo

of the UTPelletGame using the CurrPellet local variable to hold a reference to

each pellet.

foreach UTPelletGame(WorldInfo.Game).PelletInfo.Pel lets(CurrPellet)

{

}

8. Initialize the currDistance, bGoalIsHP, and bCurrIsHP variables. The

currDistance variable’s value will be the distance, calculated using the VSize()

function, from the CurrPellet to the bot’s Pawn. The two Bool variables will use

the IsA() function to find whether the CurrentGoal and CurrPellet are

HyperPellets, respectively.

currDistance = VSize(CurrPellet.Location - Pawn.Loc ation);

bGoalIsHP = CurrentGoal.IsA('HyperPellet');

bCurrIsHP = CurrPellet.IsA('HyperPellet');

9. An If-statement consisting of four separate conditions, only one of which must

be met, decides whether the current pellet is chosen as the new CurrentGoal.

if((CurrentGoal != none && bGoalIsHP && bCurrIsHP && currDistance <

Distance) ||

 (CurrentGoal != none && !bGoalIsHP && bCurrIsHP && currDistance

< HPDistanceThreshold) ||

 (CurrentGoal != none && !bGoalIsHP && currDista nce < Distance)

||

 (CurrentGoal == none && currDistance < Distance))

{

}

The four conditions are explained below in the order they appear in the code:

• A goal exists, both the goal and the current pellet are HyperPellets, and the

current pellet is closer than the goal.

Figure 11.59 – The current pellet and goal are HyperPellets, with the

current pellet closer.

• A goal exists, the current pellet is a HyperPellet but the goal is not, and the

current pellet is closer than the HPDistanceThreshold.

Figure 11.60 – The current pellet is a HyperPellet, the goal is a regular

Pellet, and the current pellet is within the HPDistanceThreshold.

• A goal is set, the goal is not a HyperPellet, and the current pellet is closer

than the goal.

Figure 11.61 – The current pellet and goal are regular pellets, with the

current pellet closer.

• No goal is set and the current pellet is closer than the value of Distance.

Figure 11.62 – There is no goal currently and the current pellet is closer

than the current distance value.

10. If any of the preceding conditions are met, the current pellet is set as the

new CurrentGoal and the Distance variable is updated with the distance from the

bot to the current pellet.

CurrentGoal = CurrPellet;

Distance = currDistance;

11. Save the script to preserve your progress.

<<<< End of Tutorial >>>>

TUTORIAL 11.24 – PELLETCOLLECTING STATE,
PART II: HASREACHEDGOAL() FUNCTION

The second function added to the PelletCollecting state is the HasReachedGoal()

function. This function determines if the bot has reached its final destination

mainly by checking the location of the bot and comparing it to the location of the

destination. If that distance between them is smaller than the collision radius of

the bot, then the bot is assumed to have reached its destination and can then

choose a new destination.

1. Open ConTEXT and the UTBot_Pellet.uc script.

2. Declare the HasReachedGoal() function with a Bool return type inside the

PelletCollecting state.

function Bool HasReachedGoal()

{

}

3. This function consists of a series of If-statements which either return True or

False. The first condition checks to make sure the bot has a Pawn assigned to it.

If not, there is no reason continuing the execution of this function si ti returns

False.

if(Pawn==none)

 return false;

4. Next, another If-statement checks that there is indeed a CurrentGoal and

MoveTarget set. The CurrentGoal represents the final destination while the

MoveTarget represents the intermediate waypoint the bot is navigating to on its

way to the final destination. If either of these is not set, then a new destination

needs to be set meaning the function should return True.

if(CurrentGoal == None || MoveTarget == none)

 return true;

5. The last If-statement also returns True if the condition is met. This statement

checks the bResetMove variable and if True, returns True to choose a new

destination. In addition, the check to see if the bot has reached its final

destination is performed.

if(bResetMove ||

 VSize(CurrentGoal.Location-Pawn.Location) <

Pawn.CylinderComponent.CollisionRadius)

 return true;

Note: The reason this statement is separate from the previous statement is

simply to keep things more legible. One If-statement with a whole slew of

conditions can become unruly. Breaking them up into smaller individual checks is

easier to read, though if we were using the && operator it may be faster to have

them all grouped since the statement would fail as soon as one of the conditions

failed saving processing time.

Figure 11.63 – The bot must be within its collision radius of the goal to

register as reaching the goal.

6. Finally, after all of the If-statements, the function will return False as a catch-

all.

return false;

7. Save the script to preserve your work.

<<<< End of Tutorial >>>>

TUTORIAL 11.25 – PELLETCOLLECTING STATE
CODE

The final piece of the PelletCollecting state is the state code itself. This code is

not contained within a function, but runs when the bot is placed into the

PelletCollecting state. This code is where the bot is actually told what to do while

in the PelletCollecting state.

Note: Many of the functions used within the state code in this tutorial and

subsequent tutorials are latent functions meaning they can only be called from

within state code and not from within any function.

1. Open ConTEXT and the UTBot_pellet.uc script.

2. The state code is placed after all the function declarations within the state and

begins with a label, in this case Begin.

Begin:

3. Each time the state begins, a check will be performed to determine if the bot

has reached its current destination by calling the HasReachedGoal() function and

using the return value as the condition in an If-statement. If the function returns

True, the FindNewGoal() function will be called to find a new destination for the

bot.

if(HasReachedGoal())

{

 FindNewGoal();

}

4. Next another If-statement checks to see whether a new destination was

found.

if(CurrentGoal != None)

{

}

5. Inside this If-statement, one of two possible actions is taken. First, the bot

checks whether the CurrentGoal is directly reachable from its current location

using the ActorReachable() function. This function determines whether the Actor

passed to the function can be navigated toward without the need of first

navigating to an intermediate waypoint using the navigational path network. If

the CurrentGoal is reachable, the bot is directed to move toward that actor by

means of the MoveToward() function.

if(Actorreachable(CurrentGoal))

{

 MoveToward(CurrentGoal);

}

Figure 11.64 – The bot moves directly to the goal.

6. If the CurrentGoal is not directly reachable, the bot needs to use the path

network to find an intermediate waypoint to move towards in order to ultimately

reach its final destination. The FindPathToward() function is passed the desired

final destination and returns the next waypoint on the path to the final

destination. That waypoint is then passed to the MoveToward() function to direct

the bot to being moving toward the CurrentGoal indirectly.

else

{

 MoveTarget = FindPathToward(CurrentGoal);

 MoveToward(MoveTarget,CurrentGoal);

}

Figure 11.65 – The bot moves toward an intermediate waypoint.

7. After all the preceding state code, outside of any If-statements, the

LatentWhatToDoNext() function is called. This function will ultimately cause the

ExecuteWhatToDoNext() function to be called which is where the major decision

making of the bot is done. We will be overriding this function in a subsequent

tutorial implementing code to cause the bot to use this new PelletCollecting state

as well as any other states that are added to the UTBot_pellet class.

LatentWhatToDoNext();

8. Save the script to preserve your progress.

<<<< End of Tutorial >>>>

TUTORIAL 11.26 – PELLETHUNTING STATE, PART
I: FINDNEWGOAL() FUNCTION

While in the PelletCollecting state, the bot seeks out pellets which have not been

collected. Once all the pellets have initially been collected, the bot uses the

PelletHunting state to seek out the player with the most points currently in order

to hunt down and kill them and acquire their points. This state extends the

PelletCollecting state and will override both functions contained within it.

1. Open ConTEXT and the UTBot_Pellet.uc script.

2. After the PelletCollecting state, declare the new PelletHunting state extending

from the PelletCollecting state.

state PelletHunting extends PelletCollecting

{

}

3. The FindNewGoal() function is declared first overriding the version inherited

from the PelletCollecting state.

function FindNewGoal()

{

}

4. The basic idea of the FindNewGoal() function remains; it locates the most

desirable destination for the bot to move toward. In this instance, the most

desirable destination will be the player with the most points, other than the bot

itself. This function will iterate through all the controllers within the level

comparing their scores. This will require two local variables: one to hold the

current controller and one to hold the highest score.

local Controller CurrController;

local Int CurrScore;

5. First, the Pawn of the controller is checked to see that it has a valid reference.

If not, there is no need to continue execution of this function.

if(Pawn==none)

 return;

6. Next the CurrentGoal and CurrScore are initialized. The CurrentGoal variable

has any current reference to an acotr removed, while the CurrScore variable has

its value set to -1 to ensure that a destination is chosen even if all the other

players have no points.

CurrScore = -1;

CurrentGoal = None;

7. Now the AllControllers iterator is used to loop through each controller within

the level. The base Controller class is used so that players and bots are both

included and the current controller is held by the CurrController local variable.

foreach

WorldInfo.AllControllers(class'Engine.Controller',C urrController)

{

}

8. Inside the iterator, the current controller is compared to the bot using the Self

keyword to make sure the current controller is not the bot in question. Also, the

current controller’s score is compared to the CurrScore to see if the controller

has more points. If both these conditions are met, The current controller’s Pawn

is set as the CurrentGoal and its score is set as the CurrScore.

if(CurrController != self &&

CurrController.PlayerReplicationInfo.Score > CurrSc ore)

{

 CurrScore = CurrController.PlayerReplicationInfo .Score;

 CurrentGoal = CurrController.Pawn;

}

9. Save the script to preserve your progress.

<<<< End of Tutorial >>>>

TUTORIAL 11.27 – PELLETHUNTING STATE, PART
II: HASREACHEDGAOL() FUNCTION

Because the bot is now hunting down players, the definition of reaching the

destination has changed slightly. In the PelletHunting state, the bot only needs

to be within a certain distance from the destination before it is considered to

have reached that destination. It isn’t usually the best fighting tactic to run

straight up to your opponent. So, once the bot is within an acceptable radius, it

will be told to begin hunting and fighting the player using its existing fighting

functionality.

1. Open ConTEXT and the UTBot_Pellet.uc script.

2. Inside the PelletHunting state after the FindNewGoal() function, copy and

paste the HasReachedGoal() function from the PelletCollection state as this

state’s version will be very similar.

function Bool HasReachedGoal()

{

 if(Pawn==none)

 return false;

 if(CurrentGoal == None || MoveTarget == none)

 return true;

 if(bResetMove ||

 VSize(CurrentGoal.Location-Pawn.Location) <

Pawn.CylinderComponent.CollisionRadius)

 return true;

 return false;

}

3. The first two If-statements remain, but the third must be changed. It is

replaced by an If-statement that calculates the distance from the CurrentGoal to

the bot and compares the result to a set distance, 1024 units in this case, that

will represent the minimum distance the bot must be from the destination to

proceed.

if(VSize(CurrentGoal.Location-Pawn.Location) < 1024)

{

}

4. Inside the If-statement, The CurrentGoal is set to be the Enemy of the bot at

this point.

Enemy = Pawn(CurrentGoal);

The Enemy must be a Pawn so a cast is needed here. This only works because

the CurrentGoal is guaranteed to be a Pawn in the PelletHunting state.

Figure 11.66 – The goal becomes the enemy when within 1024 units of

the bot.

5. Another If-statement uses the return value of the CanSee() function which

returns True if the Pawn passed to it can be seen within the peripheral vision of

the bot.

if(CanSee(Pawn(CurrentGoal)))

{

}

6. If the condition is met, the FightEnemy() function is called passing a value of

True specifying the bot can charge the Enemy as well as passing in the strength

of the Enemy as returned from the RelativeStrength() function. This function

uses the existing functionality from the UTBot class to determine how to go

about fighting the Enemy.

FightEnemy(true,RelativeStrength(Enemy));

Figure 11.67 – The bot attacks when it has line of sight to the enemy.

7. Save the script to preserve your work.

<<<< End of Tutorial >>>>

TUTORIAL 11.28 – EXECUTEWHATTODONEXT()
AND WANDERORCAMP() FUNCTION OVERRIDES

The states within the UTBot_Pellet class exist, but currently there is no

functionality for placing the bot into either of these two states besides being

initially placed in the PelletCollecting state by means of the auto keyword. Simply

being placed into the state once only causes the state code to be executed a

single time and then the bot ceases to function. The call to the

LatentWhatToDoNext() function in the state code accounts for this by forcing the

ExecuteWhatToDoNext() function when appropriate. By overriding that function,

the bot can essentially choose whether to collect pellets, hunt down the leader,

or use the existing UTBot behavior.

1. Open ConTEXT and the UTBot_Pellet.uc script.

2. Outside of any state, declare the ExecuteWhatToDoNext() event. It should

have the following signature:

protected event ExecuteWhatToDoNext()

{

}

3. This class’s version of this function uses a weighted average of several

properties belonging to the bot to calculate a percentage of likelihood that the

bot collects pellets or hunts down the leader instead of using the UTBot behavior.

This weighted average is made up of four individual pieces.

4 * FClamp(Skill/6.0, 0.0, 1.0)

The Skill of the bot is normalized and clamped toa range of 0.0 to 1.0 and given

a weighting of 4.

2 * Aggressiveness

The previous Skill weighted value is added to Aggressiveness of the bot with a

weighting of 2.

2 * (1 - ((CombatStyle + 1.0) / 2))

The previous result is then added to the Inverse of the CombatStyle of the bot

after it has been shifted and normalized to the range of 0.0 to 1.0 and given a

weighting of 2.

2 * (1 - Jumpiness)

Next, the inverse of the Jumpiness property of the bot is given a weight of 2 and

added to the previous result.

(4 * FClamp(Skill/6.0, 0.0, 1.0) +

 2 * Aggressiveness +

 2 * (1 - ((CombatStyle + 1.0) / 2)) +

 2 * (1 - Jumpiness)) / 10

Finally, the entire calculation is divided by 10, or the total sum of all the weights

in order to calculate the average. These values are simply the result of trial and

error and the properties used are personal preference other than Skill. The skill

is used and weighted the most as it is directly being modified by the gametype

created in the previous chapter in order to make the difficulty of the game

increase as it progresses. By using this property, we ensure that the bots are

more aggressive in collecting pellets or hunting down the leader as the game

progresses as well.

4. The weighted average from the previous step is compared against a random

value from the range 0.0 to 1.0 as the condition for an If-statement. If the

weighted average is greater than the random value, the bot is placed into one of

the states added to the UTBot_Pellet class. If not, a call to the UTBot version of

ExecuteWhatToDoNext() is made to use standard bot behavior.

if(RandRange(0.0,1.0) < (4 * FClamp(Skill/6.0, 0 .0, 1.0) +

 2 * Aggressiveness +

 2 * (1 - ((CombatStyle + 1.0) / 2)) +

 2 * (1 - Jumpiness)) / 10)

{

}

else

 Super.ExecuteWhatToDoNext();

5. Inside the If-statement, another If-statement is used to determine if any

pellets remain in the level to be collected.

if(UTPelletGame(WorldInfo.Game).PelletInfo.Pellets. Length > 0)

{

}

else

{

}

6. Beginning inside the If block, when there are still pellets remaining to be

collected, the bot is placed in the PelletCollecting state. Prior to that, the

CurrentGoal of the bot is cleared if the bot was not already in the PelletCollecting

state. This makes sure an appropriate destination is chosen when entering a new

state because the bot could have made its way across the level in another state

and would begin navigating toward a previous destination nowhere near its

current location.

if(!IsInState('PelletCollecting'))

 CurrentGoal = None;

GotoState('PelletCollecting','Begin');

The IsInState() function returns a Bool value specifying whether the bot is

currently in the PelletCollecting state. The GotoState() function places the bot

into the specified PelletCollecting state. The optional label Begin passed to the

function directs the bot to begin execution at that label in the state’s state code.

7. Continuing inside the Else block, the bot is placed into the PelletHunting state

because there are no more pellets to be collected. As in the previous step, the

CurrentGoal is cleared if the bot is not already in the PelletHunting state.

if(!IsInState('PelletHunting'))

 CurrentGoal = None;

GotoState('PelletHunting','Begin');

8. The WanderOrCamp() function of the UTBot class is called at certain times

throughout the class and simply sends the bot to the Defending state. There is

nothing in particular to defend in the UTPelletGame and using that state is not

particularly useful. This function will be overridden in the UTBot_Pellet class to

send the bot to one of the new states defined in the class. Declare the

WanderOrCamp() function to override it.

function WanderOrCamp()

{

}

9. Now copy the inner If-statement from the ExecuteWhatToDoNext() function to

place the bot in the appropriate state depending on the amount of pellets left to

be collected.

if(UTPelletGame(WorldInfo.Game).PelletInfo.Pellets. Length > 0)

{

 if(!IsInState('PelletCollecting'))

 CurrentGoal = None;

 GotoState('PelletCollecting','Begin');

}

else

{

 if(!IsInState('PelletHunting'))

 CurrentGoal = None;

 GotoState('PelletHunting','Begin');

}

10. Save the script to preserve your work.

<<<< End of Tutorial >>>>

TUTORIAL 11.29 – PELLET CLASSES BOT SETUP

With the majority of the behavior for the bots in place, we run into problems

when a bot is navigating toward a pellet and another player collects that pellet

before the bot reaches it. Some additional functionality must be added to the

Pellet, HyperPellet, and SuperPellet classes in order to account for this situation.

1. Open ConTEXT and the Pellet.uc, HyperPEllet.uc, and SuperPellet.uc scripts.

2. In the Touch() event, any bots that are currently navigating toward this pellet

need to have their bResetMove variable set to True to cause the bot to choose a

new destination. This will be done by iterating through the UTBot_Pellet

controllers within the level which means a UTBot_Pellet local variable named AI

is needed.

local UTBot_Pellet AI;

3. Inside the If-statement, set upan iterator using the AllControllers iterator

function passing it the UTBot_Pellet class and the AI local variable.

foreach

WorldInfo.AllCOntrollers(class'MasteringUnrealScrip t.UTBot_Pellet',A

I)

{

}

4. Inside the iterator, the CurrentGoal of the current bot is checked against the

pellet using an If-statement. If the pellet and the bot’s CurrentGoal are one and

the same, the bresetMove property of the bot is set to True.

if(AI.CurrentGoal == self)

 AI.bResetMove = true;

5. Now, copy the new local variable declaration into the Touch() event of both

the HyperPellet and SuperPellet classes.

6. Finally, copy the iterator into the two additional pellet classes.

7. Save the scripts to preserve your progress.

<<<< End of Tutorial >>>>

TUTORIAL 11.30 – PELLET BOT COMPILING AND
TESTING

With the custom bots for the UTPelletGame gametype completed, the

UTPelletGame class needs to be told to se the new bot class. Once that is

completed, the scripts can be compiled and the gametype can be tested to make

sure the bots behave as expected.

1. Oopen ConTEXT and the UTPelletGame.uc script.

2. In the defaultproperties block, set the BotClass property to reference the new

bot class, UTBot_Pellet.

BotClass=Class'MasteringUnrealScript.UTBot_Pellet'

3. Save the script and compile the scripts, fixing any syntax errors which may be

present.

4. Load up Unreal Tournament 3 and choose an Instant Action game.

Figure 11.68 – An Instant Action game is started.

5. Select UTPelletGame from the next screen and the CH_10_PowerDome map

after that.

Figure 11.69 – The CH_10_PowerDome map is selected.

6. Choose the number of bots so there are as many bots as you would like in the

map, five to seven is usually a good number for this map, and choose to start

the game.

Figure 11.70 – Bots must be added to the map for testing.

7. At this point, testing the game and the bots’ behavior is up to you. Turning on

God mode by entering ‘god’ in the console is usually a good idea so you are not

being killed while observing the behavior of the new bots. You can press F1 to

show the scoreboard at any time to see how many points each bot has. This is

usually a good way to see if they are collecting pellets as you would expect.

Figure 11.71 – The in-game scoreboard shows the number of pellets

collection by each playet in the game.

The main things to look for are that the pellets are being collected and that the

bots with less pellets are seeking out and attacking the bot with the most.

Collecting more than half the pellets yourself is a good way to test this as the

rest of the bots should all come after you in force once all the remaining pellets

have been collected.

Figure 11.72 – The bots are now collecting the pellets.

These tutorials should not only have shown the use of states to differentiate

behaviors, but hopefully has given you an insight into how to implement new AI

and navigation functionality using the functions built into the controller classes.

<<<< End of Tutorial >>>>

11.8 - SUMMARY

States are an incredibly powerful tool within Unreal Engine 3 enabling objects

within the game to behave in distinctly different manners in various situations

while minimizing the need for convoluted control structures. This is yet another

case of the UnrealScript programming language being tailored specifically to the

creation of objects to be used within a gaming environment. The organization

and readability provided by states makes creating new items with incredibly

complex behaviors much easier for you as a gameplay programmer.

