

Chapter 13

Interfaces

• Chapter 13 – Interfaces

o What are interfaces?

o Examples of Interfaces

� USB

� COMPUTER MICE

� POWER OUTLETS

o PROGRAMMING SPECIFICS

o DEFINING INTERFACES

� DECLARATION V. DEFINITION

o INTERFACE INHERITANCE

o IMPLEMENTING INTERFACES

o WHY ARE INTERFACES USED?

o FINAL WORDS

o TUTORIAL 13.1 – THE COMPASS, PART I: ICOMPASS INTERFACE

o TUTORIAL 13.2 – THE COMPASS, PART II: COMPASS CLASS

IMPEMENTATION

o TUTORIAL 13.3 – THE COMPASS, PART III: TESTING THE COMPASS,

PART I

o TUTORIAL 13.4 – THE MINIMAP, PART I: THE MU_MINIMAP CLASS

o TUTORIAL 13.5 – THE MINIMAP, PART II: THE MINIMAPGAME CLASS

o TUTORIAL 13.6 – THE MINIMAP, PART III: MINIMAPHUD INITIAL

SETUP

o TUTORIAL 13.7 - THE MINIMAP, PART IV: MINIMAPHUD FUNCTIONS

o TUTORIAL 13.8 – THE MINIMAP, PART V: DRAWMAP() INITIAL SETUP

o TUTORIAL 13.9 – THE MINIMAP, PART VI: PLAYERPOS AND

CLAMPEDPLAYERPOS

o TUTORIAL 13.10 – THE MINIMAP, PART VII: MAP ROTATION

o TUTORIAL 13.11 – THE MINIMAP, PART VII: SET MATERIAL PARAMS

AND DRAW MAP

o TUTORIAL 13.12 – THE MINIMAP, PART VIII: DRAWING OTHER

PLAYERS

o TUTORIAL 13.13 – THE MINIMAP, PART IX: MAP SETUP AND

SCREENSHOT

o TUTORIAL 13.14 – THE MINIMAP, PART X: MINIMAP MATERIAL AND

FINISHING TOUCHES

o TUTORIAL 13.15 – THE MINIMAP, PART XI: TESTING THE MINIMAP

o TUTORIAL 13.16 – THE CAPTURE VOLUME, PART I: INITIAL SETUP

o TUTORIAL 13.17 – THE CAPTURE VOLUME, PART II: TOUCH AND

TIME

o TUTORIAL 13.18 – THE CAPTURE VOLUME, PART III: THE CAPTURED

STATE

o TUTORIAL 13.19 – THE CAPTURE VOLUME, PART IV: THE TIMER

FUNCTION

o TUTORIAL 13.20 – THE CAPTURE VOLUME, PART V: UPDATING THE

EVENTS

o TUTORIAL 13.21 – THE CAPTURE VOLUME, PART VI: TOGGLING THE

VOLUME OFF & UPDATING OUR DEFAULTPROPERTIES BLOCK

o TUTORIAL 13.22 – THE CAPTURE VOLUME, PART VII: THE

SEQUENCE EVENT’S INTERFACE AND IMPLEMENTATION

o TUTORIAL 13.23 – PLACING A CAPTUREVOLUME AND SEEING IT IN

ACTION

o INTERFACES WITHIN UT3

o SUMMARY

We now have more than enough to accomplish most any task in Unreal Script.

We understand the syntax, how to instantiate variables and functions. We have

covered a few advanced topics, allowing us to take advantage of iterators, states

and now delegates. In this chapter we are going to go a step further, opening

the door to dependable programming as your project grows by introducing

Interfaces. We will see their purpose, instantiation and a couple examples of how

they can be used to help maintain coding standards throughout a project.

What are interfaces?

Programming poses many challenges that are not entirely obvious to the lay

observer. Game development, in particular, poses many such challenges and as

such, it is a field that takes advantage of most every aspect of software

engineering. Occasionally when working in large object oriented systems you will

create a number of classes that are all used in a single way, defining a group of

functions that provide the same function signature.

class MyPistol extends MyWeapon;

function bool PrimaryFire(float rate)

{

 /* Pistol Stuff Here */

}

/* and so forth */

class MyRifle extends MyWeapon;

function bool PrimaryFire(float rate)

{

 /* Rifle Stuff Here */

}

/* and so forth */

class MyShotgun extends MyWeapon;

function bool PrimaryFire(float rate)

{

 /* Shotgun Stuff Here */

}

/* and so forth */

It is entirely possible – similar to how it is possible to swim across the English

Channel or build a house entirely from toothpicks – to throw ourselves to the

wind and just write the code here, but it doesn’t ensure that we implement the

necessary functions properly. Nor does it provide any assurance that our

functions will not change over time, so refactoring our code later may be a

hassle; this is of course not to mention that it doesn’t provide a means for us to

ensure that our buddies and co-developers actually follow directions.

Many object oriented languages provide a tool that will help mitigate this issue,

and Unreal Script stays true to its Java and CPP roots. Interfaces are used in

these types of situations, partially handing the complications of monitoring code

development over to the compiler, while helping us increase the quality of our

code by providing an explicit means of planning our classes according to a

defined standard.

A term that will be useful in this discussion is Implement. Throughout the rest of

this chapter I will use it to refer to a class or device providing some group of

functionality to the user. A spoon implements the utensil interface, which is

synonymous to saying that a spoon provides all of the functionality of a utensil.

A spoon may implement the utensil, but that is not to say that it is not

specialized in its own way, providing further functionality.

Examples of Interfaces

If you were to take a trip to your local Ikea or cutlery shop you will find

extravagant views of what a fork, spoon or knife should be, and chances are they

will look different than the ones here. Regardless of this possibility though, they

implement the same standards as all other cutlery, when looked at on the whole.

Some may even be specialized further, such as a straining spoon which is useful

for vegetables, or a spork which combines the usefulness of both elements into a

stubby red headed step child, also known as the “best of both worlds.”

Fork Spoon Knife

• To manipulate

food, that is simple

• Provide for easy

removal of items

that have been

picked up

• To move liquids

and jello from one

location to another

• To split food into

pieces small

enough to be

placed in my

mouth.

Table 13.1 Simple example of Interfaces using Utensils

Being a utensil may place other standards or requirements on our Fork, Spoon

and Knife, such as ensuring:

• They are large enough to be useful, but small enough to fit in our mouths

and hands

• They aren’t made out of perishable or non standard materials (no one ever

heard of Styrofoam utensils)

• They are the correct length, to make sure we don’t end up biting our

fingers or poking our girlfriends eyes out as we eat

• They are not bent in an unacceptably complicated manner, forcing us to

contort our bodies to be able to eat

USB

Another example of an interface is something that we each use on a regular

basis, and is more than likely on each of our computers. When we plug in a USB

device we are taking advantage of a well defined interface, allowing us to use

one port to plug in everything from a Wacom tablet, to a mouse, to a hard drive.

We can reliably jam our USB dongle into our computer and within a few seconds

windows will recognize – or not in some cases – our device and allow us to use it

straight away. USB has not been around forever, many of the people I know

remember how stressful it was to get our joysticks to work on the Commodore

64, and it had a standardized interface as well, called a serial port.

Figure 13.1 – A common USB Port

COMPUTER MICE

Interfaces are all around us, allowing us to pick up a mouse and depend upon its

left and right buttons working, or how it moves meeting our expectations. Mice

are a great example of interfaces because they expose a second characteristic of

interfaces – implementation may change. The mouse may be ball, trackball, light

or laser, but regardless of the implementation we can dependably use this mouse

as we have learned over the years. Moving it along our mouse pad, or spinning

the trackball, sends the proper commands to our computer to move the cursor

around the screen; clicking the buttons also provides the expected response

from your computer.

POWER OUTLETS

Two and three pronged power outlets provide an interface between electric

devices, like your refrigerator or ceiling fan and the power grid provided by the

city. We have multiple interfaces to deal with here, though. Three pronged

interfaces allow us to take advantage of grounding, while two pronged outlets

don’t.

Our device, like a laptop or desktop computer, can only be plugged into a three

pronged outlet, because of power requirements and surge protection. A two

pronged item, like a desk fan or Cell phone adapter uses only two, but it may be

plugged into either outlet because the three pronged outlet provides all of the

same functionality as the two pronged outlet, it simply goes a step further,

providing the ground as well.

The three pronged outlet is said to Implement the two pronged interface. If we

were to set up an inheritance tree for some popular outlet types it could look

something like this, although this is admittedly simplified to exclude the high

voltage lines that you may find your refrigerator or deep freezer plugged into.

Figure 13.2 - Power Outlet Tree Diagram

We can use these diagrams of this type to help orient our notes and keep a fifty-

thousand foot view of our classes and how they relate. They are also fun to keep

track of what we can use at which level. Looking at this diagram and knowing

that I have a heavy duty hair dryer to use I can look in my bathroom and find

anything that implements the three pronged outlet, while my desktop fan can be

plugged into anywhere in my house.

PROGRAMMING SPECIFICS

When it comes to programming we use interfaces to define certain functions that

can be depended upon by other classes. When programming, you will

occasionally find yourself defining a number of functions that have the same

input output and name. We call this combination a function’s signature. Working

within these confines you can draft some sort of requirement and hand it to your

programmers telling them what kind of functionality to provide, but Interfaces

allow you to force the compiler to confirm that you have provided them.

One way to look at this is to think of an example group of objects as follows:

Figure 13.3 Interface Overview

This hierarchy allows us to see a plan for our weapons, and we have created two

interfaces, the IWeapon and the IZoomedWeapon interfaces, although the details

of their contents don’t really matter at this point. We can see here that the

Pistol, MachineGun and RocketLauncher implement the IWeapon Interface, while

the SniperRifle implements the IZoomedWeapon Interface. When working with

interfaces it is a standard practice to have interfaces use the “I” prefix to set

them apart.

It may be useful to look at the interfaces, like IWeapon and IZoomedWeapon, as

enforcers, or explicit laws. The compiler uses interfaces as a requirements

document for your code. Each interface defines necessary functions and when

you implement it the compiler does the checking to ensure that you have

implemented them. Looking into IWeapon we could see something like the

following, in pseudo-code:

All weapons will implement a Primary Fire, accepting the rate that it fires, and

Secondary Fire method which accepts the number of the rounds it should fire.

Both will return false if the execution was successful.

To ensure data integrity we will define two constants that will be free to be used

throughout the implementations. The Maximum Firing Rate and the Minimum

firing Counter.

When you attempt to compile the above classes the compiler will check the

pistol, machinegun, and any other class implementing the IWeapon interface, to

see that they are implementing the necessary functions. Depending on the

language, not implementing a function defined in an interface will more than

likely result in an error, or some scary looking output at compile time.

DEFINING INTERFACES

Unreal uses the Interface keyword to denote an interface, which is different from

a class, as we discussed earlier, because of the function signature. In Unreal

Script we are free to define any number of functions, or data types as we see fit.

This includes functions, structures, enumerations, or anything further that does

not actually instantiate memory. You can use this fact to centralize these

declarations and minimize the code duplication problems that you may run into.

In Unreal Script, Interfaces are defined in a simple fashion, following the

standard set by the classes. Below is the IWeapon interface that we just went

through, declared in Unreal Script, instead of pseudo-code.

Interface IWeapon;

/* Define our constants */

const MaximumFiringRate = 0.05; // 60/1200

const MinimumFiringCounter = 3;

/* All following function declarations */

function bool PrimaryFire(float Rate);

function bool SecondaryFire(int Counter);

DECLARATION V. DEFINITION

Everything from the return type to the input value must match these function

signatures for it to be compiled by Unreal 3. This highlights another important

aspect of programming in this environment, the differentiation between

Declaration and Definition.

• The interface declares functions, supplying the necessary elements like

return type and input arguments.

• When you implement the interface in a class you will be able to define the

actual details of the function, like how it works or what it does.

It may be helpful to think about this in terms of a restaurant outing. You are

given the menu initially, an interface, but once you choose from that you will be

given the meat and potatoes of your meal. The interface is the menu, the food

itself is the implementation.

INTERFACE INHERITANCE

Similar to our discussion about power adapters, you can build interfaces off of

each other. This is accomplished in the same way as classes are extended, using

the Extends keyword.

Interface IZoomedWeapon extends IWeapon;

function bool ZoomedFire(float Rate, int FOV);

It is certainly the case that we can build complicated hierarchical inheritance

trees for interfaces, but you should do what you can to stay away from them.

Just as with your classes you should create interfaces only when needed, and

define them explicitly. Defining interfaces to be nebulous or include frivolous

declarations will lead to complicated classes with empty functions. Using

interfaces is exceptionally beneficial when you plan ahead. I would strongly

recommend a class in object oriented analysis and design or a book on UML if

you are turned on by this type of discussion.

IMPLEMENTING INTERFACES

Implementing an Interface in a class is really quite straight forward in Unreal

Script, similar in fashion to what we are used to with the class derivation.

Interfaces will more than likely be stand alone, however. Let’s look at two

examples to drive this home. The pistol class implements the IWeapon interface,

and its class will look something like the following in UScript:

Class Pistol extends UTWeapon implements(IWeapon);

function bool PrimaryFire(float Rate)

{

 if (Rate > class'IWeapon'.const.MaximumFiringRat e)

 return true;

 /* Do mumbo jumbo here */

 return false;

}

function bool SecondaryFire(int Counter)

{

 if (Counter < class'IWeapon'.const.MinimumFiring Counter)

 return true;

 /* Do jumbo mumbo here */

 return false;

}

As you can see this implements the necessary functions, declared in the

interface, and when you compile it you will get no errors. You will certainly see a

peculiar line…

if (Rate > class'IWeapon'.const.MaximumFiringRate)

This line is an example of how you gain access to a constant within an interface.

As a rule, treat interfaces as though they are classes and you can gain access to

their defined elements in the same fashion. (This is discussed in the third

chapter)

Just for examples sake, if you were to compile with the interface implemented

incorrectly you will see an error like the following:

Error, Implementation of function 'SecondaryFire' c onflicts with

interface 'IWeapon' - parameter 0 'Counter'

Compile aborted due to errors.

Let’s look at our sniper rifle.

Class SniperRifle extends UTWeapon implements(IZoom edWeapon);

function bool PrimaryFire(float Rate)

{

 if (Rate > class'IWeapon'.const.MaximumFiringRat e)

 Rate = class'IWeapon'.const.MaximumFiringRate ;

 /* Do mumbo jumbo here */

 return false;

}

function bool SecondaryFire(int Counter)

{

 if (Counter < class'IWeapon'.const.MinimumFiring Counter)

 Counter = class'IWeapon'.const.MinimumFiringC ounter;

 /* Do jumbo mumbo here */

 return false;

}

function bool ZoomedFire(float Rate, int FOV)

{

 /* boom headshot! */

 return false;

}

As you can see here this class implements IZoomedWeapon, which in turn

extends the IWeapon interface. The compiler expects both interfaces to be

implemented, and as a rule it will check every interface above the current one to

ensure that all of their functions are defined as well. This is another reason to

keep the interface tree short – think bush or shrub.

Also note that neither of our classes has had to define the constants.

When you first begin working with interfaces you will undoubtedly have a tough

time and may wind up being overwhelmed. It may be useful to create Interface

index cards to keep track of your interfaces.

IWeapon

Functions

• PrimaryFire(rate)

o Returns Success

• SecondaryFire(spread)

o Returns Success

Constants

• MaximumFiringRate

• MinimumFiringSpread

Table 13.2 - IWeapon Interface

IZoomedWeapon extends IWeapon

Functions

• ZoomedFire(Rate, FOV)

• Returns Success

Constants

• None

Table 13.3 - IZoomedWeapon Interface

Let’s review what interfaces are and highlight a couple quirks within the UT3

paradigm, then we will get into more code and see about building something out

that will actually be interesting.

• Interfaces allow us to declare functions that must be implemented within

our classes

• They provide us with a means to impose requirements upon our functions

declarations

• They make no requirement on the implementation other than the function

signature, also known as declaration

o Instead their focus is on how the functions will be used

o Implementation may vary from between classes; definition may be

different

o If a function is implemented in a parent class it will satisfy the

interfaces requirements

• UT3 provides us a means to define Enumerations, Structures, and

Constants, but nothing that actually requires memory

• Implementing multiple interfaces is possible, but should be used only in

select circumstances

o Implementing two interfaces of the same hierarchy will cause issues

within your code and should be avoided like the plague

WHY ARE INTERFACES USED?

As we have already discussed, interfaces provide a mechanic to the compiler to

ensure our classes conform to some specifications. Epic distributes quite a few

interfaces, including but not limited to the UI elements, many of the elements for

online gameplay, and some data-store craziness. If you look closely you will find

each interface is implemented as we have seen already in our examples, and a

second method, similar to what we experienced in the classes, as variable types.

A prime example of this is in the OnlineSubsystem:

/** The interface to use for creating and/or enumer ating account

information */

var OnlineAccountInterface AccountInterface;

/** The interface for accessing online player metho ds */

var OnlinePlayerInterface PlayerInterface;

/** The interface for accessing online player exten sion methods */

var OnlinePlayerInterfaceEx PlayerInterfaceEx;

/** The interface for accessing system wide network functions */

var OnlineSystemInterface SystemInterface;

/** The interface to use for creating, searching fo r, or destroying

online games */

var OnlineGameInterface GameInterface;

/** The interface to use for online content */

var OnlineContentInterface ContentInterface;

/** The interface to use for voice communication */

var OnlineVoiceInterface VoiceInterface;

/** The interface to use for stats read/write opera tions */

var OnlineStatsInterface StatsInterface;

/** The interface to use for reading game specific news

announcements */

var OnlineNewsInterface NewsInterface;

This reinforces what we have already learned about interfaces, but it may not be

entirely obvious. Lets take a look back at our weapons that we defined earlier.

We had defined our interface and said that they were there so they could be

used by other classes dependably. Our user could have a function as we have

here:

Function bool foo (IWeapon w)

{

 w.PrimaryFire(60/1200);

 /* any other things it wants to do */

}

In similar fashion to what we experienced earlier declaring variable types in our

classes, function parameters and structures. The upside, or downside depending

on how you look at it, is that you have a variable that is already cast to that type

when you are about to use it. This is used throughout the default codebase and

as such it is quite common place for reference material.

Base Types Classes Constants

• Only items of this

type

• Ex. Bool

• This class or any

inheriting it

• Ex. UTPawn

• Any class

implementing this

interface

• Ex.

OnlineAccountInte

rface

Table 13.4 - Interfaces are accepted when used as a type

FINAL WORDS

When to subclass and when to create in interface is a question many people like

to ask, and it’s not a bad question. When you get yourself going you will find that

interfacing creates similar results to sub classing, with one difference – sub

classing doesn’t stop you from changing the signature of a function, which is one

prime example of when to use an interface. Some projects require a defined

interface before a class is defined, as we discussed previously.

Throwing ourselves to the wind is a way of saying let chance control our destiny.

A simple typo may lead to hours of debugging, while an interface will give you a

direct line of where your function is not declared correctly.

TUTORIAL 13.1 – THE COMPASS, PART I:
ICOMPASS INTERFACE

We should now take a few minutes and implement an interface of some sort, just

to drive home our discussion up to this point. Let’s aim a little low for this first

one, focusing on the details, and later we will do something more interesting.

Our mapper and HUD coder have come to us, looking for a new element to be

defined, a compass. The purpose of this element is to be placed into our level

and provide the mappers fine tuned control over the direction of north, from that

the HUD coder has some needs, with which we are going to be defining our

Interface and later the actual Compass class.

The Compass needs:

Mapper Coder

• to be placed within the map

• have rotatable heading, referred

to as the Yaw

• Have a visible icon within the

map

o It has been provided by

the mapper, and is in the

CompassContent package

named compass

• Provide Getter functions for the

Yaw

• Needs to calculate for radian

and degree, in case of UI

changes

• Allow the developers to grab the

Rotator directly if they choose

• Ensure it is not removed or

changed when the map reloads

Table 13.5 - Overview of specifications for our compass object

Most of this information is implementation related, but the coder clearly

understands our needs. We should take this step by step, so the code makes

clear sense.

1. Declare the ICompass Interface.

interface ICompass;

2. Declare the GetRadianHeading() function, returning the unwound heading of

the object.

function float GetRadianHeading();

3. Declare the GetDegreeHeading() Function, returning the converted radian

value into degrees.

function float GetDegreeHeading();

4. Declare the GetYaw() function, returning the Yaw of our objects Rotation.

function int GetYaw();

5. Declare the GetRotator function, returning the entire rotator object.

function Rotator GetRotator();

6. Declare the GetVectorizedRotator() function, returning the rotator, converted

to a vector.

function vector GetVectorizedRotator();

TUTORIAL 13.2 – THE COMPASS, PART II:
COMPASS CLASS IMPEMENTATION

We can take this interface and build out a compass in a straightforward fashion,

but we should do some research to make sure we do not end up reinventing the

wheel. The only element that may be useful to avoid writing on our own is

probably the rotator, which is seemingly in every element. It also provides the

interface that our mapper is accustomed to, with the rotation tool.

The Object class has a lot of cool functions and elements, which will most likely

be useful, but the actor class actually implements the rotator that we are looking

for, and it comes with the location vector as well, so life is great!

var(Movement) const vector Location; // Actor's l ocation; use Move

to set.

var(Movement) const rotator Rotation; // Rotation.

We can start coding out our class at this point, knowing that we intend to

implement the interface and derive from this class.

1. Define our class, extending the actor class and placeable, implementing our

ICompass interface.

class Compass extends actor placeable implements(IC ompass);

2. Define the Rotator retrieval functions. Because of where we chose to derive,

the rotator is already available to us. We can quickly take care of three of the

function definitions.

// Return the yaw of the actor

function int GetYaw()

{

 return Rotation.Yaw;

}

function Rotator GetRotator()

{

 return Rotation;

}

function vector GetVectorizedRotator()

{

 return vector(Rotation);

}

We only care about the Yaw and then providing raw access to our developers.

3. The Yaw is actually not exactly in the format that we need for the HUD to be

useful, but it works fine for our mapper. We will need to do some manipulation of

the rotator, ensuring the heading is accurate for the UI work. Let us take a

couple minutes to break this apart. First declare the GetRadianHeading()

function.

function float GetRadianHeading()

{

}

a. Three local variables are needed.

local Vector v;

local Rotator r;

local float f;

b. Get the Yaw component. Note that we are copying it into a new rotator

object’s yaw value. This is the first step in simplifying our rotator.

r.Yaw = GetYaw();

c. Convert our rotator to a Vector, which make the angle manipulations easier to

handle.

v = vector(r);

d. Unwind the Heading using a function that epic has provided to us. Many

functions like it will prove to be very useful if you get deep into the mathematical

end of programming within Unreal.

f = GetHeadingAngle(v);

e. Unwind that heading, using another of the built in functions. This actually

returns a radian value, but it may be negative.

f = UnwindHeading(f);

f. Lets convert the value to positive by adding 2Pi

while (f < 0)

 f += PI * 2.0f;

g. And finally, return that value.

return f;

This is an algorithm that is used with the vehicles, save the radian conversion,

and can be seen within UTVehicle.uc on line 1199.

4. Convert the Radian measurement to degrees. We can now use the radian

measurement that we just calculated to be able to get the radian measurements.

There is a constant variable that is quite useful RadToDeg which is 180/PI, pre-

calculated for us.

function float GetDegreeHeading()

{

 local float f;

 f = GetRadianHeading();

 f *= RadToDeg;

 return f;

}

5. We are now done with the heavy lifting. The only things left to do are UI

related. Before we leave, though, it would be helpful to be able to have some

debug info output when we are working on our map later. A function that is very

useful for debugging as the level is loading is PostBeginPlay. We can output the

heading to our log file when the game begins.

event PostBeginPlay()

{

 `log("===================================",,'UTB ook');

 `log("Compass

Heading"@GetRadianHeading()@GetDegreeHeading(),,'UT Book');

 `log("===================================",,'UTB ook');

}

6. We have the functions all setup, but we now need to hook up a couple visual

items for our mapper. Specifically an icon and the arrow need to be drawn on our

object. We can also take this moment to change a couple entries to ensure our

element holds its proper values and doesn’t get removed or changed when the

map is reset.

DefaultProperties

{

}

a. Define a new ArrowComponent element, named arrow. This will be the actual

arrow our mappers will be shown to reflect the actual direction that the object is

pointing.

Begin Object Class=ArrowComponent Name=Arrow

b. The Arrow Color is the 0-255 range, which you may be familiar with, from

your experience with Photoshop or Web development. You can tweak this as you

wish. There is a color chooser within UnrealEditor that is very nicely done, but

you can also play with the integer values.

ArrowColor = (B=80,G=80,R=200,A=255)

c. This is the scale of the Arrow, not the weight. You will see its length or size

increase as you scale this value up.

ArrowSize = 1.000000

d. Provide it with a nice and friendly name to help minimize complications.

Name = "North Heading"

e. Now close it out, and add it to the components array. You will see this pattern

throughout the map components in Unreal Script. End Object

Components(0) = Arrow

f. For instance, the Sprite component. This one is going to be slightly easier to

implement, but it requires that we know the package, group and/or name of the

texture we want to display. Begin as we did previously, defining the new

component object for our Sprite.

Begin Object Class=SpriteComponent Name=Sprite

g. We are going to plug in the new texture we want to have hooked to our

element. As with all 2d sprites in the editor, it will always face the developer and

should be as minimally intrusive as possible. As discussed earlier, our Sprite has

been defined for us already – ‘UTBookTextures.compass’.

Sprite=Texture2D' CompassContent.compass'

h. Now we will take a moment to set a couple boolean values, making it hidden

in game and avoid loading it into the actual game when playing.

HiddenGame = True

AlwaysLoadOnClient = False

AlwaysLoadOnServer = False

i. And finally close it out and add it to the Components array. This element you

pass in is the Name=Sprite entry.

End Object

Components(1) = Sprite

7. There are still a couple final elements that should be toggled for good

housekeeping, lets cover those before we complete this task.

a. bStatic is a Boolean that controls whether the Mappers have the ability to

change anything about this actor during game play. The compass should stick to

pointing north, so it should be static.

bStatic = True

b. bHidden controls the visibility of the primitive components of this actor. You

can think of this as a failsafe to the boolean values we changed on the Sprite

component.

bHidden = True

c. bNoDelete controls the ability for this actor to be deleted during gameplay. It

would be quite confusing for the compass to wink out of existence, so we clearly

want this property set to True.

bNoDelete = True

d. bMovable is tied into the movement of the actor. Another failsafe within the

actor class.

bMovable = False

You can find more information on the components by looking at the dozens of

derivative classes under Component. Suffice to say that these two are to hook up

a sprite and an arrow component on our object, based at its origin.

TUTORIAL 13.3 – THE COMPASS, PART III:
TESTING THE COMPASS, PART I

All of the coding is now behind us, at least for the compass element. We should

now build the code and open up the editor to check that we did everything

properly, place it into a map and then load it up into UT3 to test that the element

is working.

1. Go ahead and load up the editor. You should create a new (or open up an

existing if you are so inclined) map and set it up to have the necessary elements.

2. Open up the Actor Classes browser. This is within the Generic Browser, under

Actor Classes and contains the class hierarchy within Unreal Script.

3. The script package should already be loaded since it is in the ModPackages list

in the UTEditor.ini file, but if it is not for some reason, go to File > Open then

navigate to your Unpublished\CookedPC\Scripts directory, where your compiled

.u file resides.

Figure 13.4 - File Dialog Looking for MasteringUnrealScript.u

4. Once it has loaded it should show the compass element in the class tree,

under Actor, as seen in Figure 13.5. Select it and go over to your map. You

should now be able to right click and an “Add Compass Here” menu option

provided to you.

Figure 13.5 - Actor Class Browser with our Compass

5. Selecting this element will create an element like the one in Figure 13.6. You

can make sure it works properly by selecting it in the editor and switching to the

rotation tool and see the arrow rotate.

Figure 13.6 - Our Compass Object in a map

6. If you load up your level now you should see something like the following in

your log file, showing that it is indeed working.

Figure 13.7 - Excerpt of the games log file.

As we can see here, our compass is reporting the appropriate values, in both

radian and degree format, so our developers can do what they need to do. This

is a prime example of where planning and interfaces come together. Just to

recap, our process was as follows:

• See what the needs of the class will be

• Define the interface as per the specifications

• Define the functions for our class, implementing the interface as a failsafe

• Attach the necessary components

• Test

Now that we have a working implementation of this compass object, in the next

series of tutorials you will be building upon this idea to create a fully-functional

dynamic minimap system that follows the player’s position in the map and

displays the locations of other players within the map as well.

TUTORIAL 13.4 – THE MINIMAP, PART I: THE
MU_MINIMAP CLASS

Minimaps should be fairly familiar to anyone who has played any of the open

sandbox –style games that have been released recently. Essentially, this is a

map displayed on the screen at all times that shows a portion of the world

surrounding the player. As the player moves or turns, the map moves or rotates

with them. The minimap we will create will consist of two parts: the map and a

compass overlay

In order to create a working minimap system, we will need three things: a

subclass of the Compass class to place in the map and hold some data specific to

the map in question, a new heads up display (HUD) class that will handle

drawing the map to the screen, and a new gametype to force the new HUD class

to be used. The HUD class will extend the basic UTHUD class and simply add the

necessary functionality to draw the minimap. The gametype class will be a very

simple extension of the UTDeathMatch gametype which overrides the type of

HUD used and does a small amount of setup related to the minimap system.

To begin with, in this tutorial we will declare the MU_Minimap class which is a

subclass of the Compass class.

1. Open ConTEXT and create a new file named MU_Minimap.uc using the

UnrealScript highlighter.

2. Declare the new MU_Minimap class extending from the Compass class.

class MU_Minimap extends Compass;

3. This class needs several editable variables declared. First, a

MaterialInstanceConstant to hold a reference to the material to be used for the

map itself. We will take a look at the material setup later once we have all the

coding out of the way and we are ready to set up the MU_Minimap actor within

our map.

var() MaterialInstanceConstant Minimap;

Figure 13.8 - An example minimap texture.

4. Another MIC variable referencing the material for the compass overlay is also

needed.

var() MaterialInstanceConstant CompassOverlay;

Figure 13.9 – An example of a compass overlay texture.

5. A sphere component is added to the class and is made editable in order to

make setting up the level and getting the map screenshot just right. The idea is

that the location of this actor will represent the center of the map and the radius

of the sphere will represent the extent in each direction covered by the map.

var() Const EditConst DrawSphereComponent MapExtent sComponent;

6. A Bool variable named bForwardAlwaysUp will allow the designer to specify

whether the player’s forward movement should always be displayed as upward

movement on the screen or at offset from straight up by the North direction

angle as determined by the rotation of the MU_Minimap actor. The odds are good

this will always be set to True as it makes the most sense, but we will leave the

option.

var() Bool bForwardAlwaysUp;

Figure 13.10 – The arrow shows the direction of forward movement. On

the left with bForwardAlwaysUp set to False, and on the right with it set

to True.

7. In order to track the player’s position in the map and convert it to a position

in the map texture, we need to know the range of world space coordinates in the

X- and Y-axes that is covered by the map texture. Two Vector2D variables will

hold these values.

var Vector2D MapRangeMin;

var Vector2D MapRangeMax;

8. Another Vector2D variable will hold the X and Y world space coordinates

corresponding to the center of the map texture.

var Vector2D MapCenter;

9. The values of the MapCenter variable will be assigned in the PostBeginPlay()

function. Override this function and assign the values to this variable, making

sure to call the parent class’s PostBeginPlay() function as well.

function PostBeginPlay()

{

 Super.PostBeginPlay();

 MapCenter.X = MapRangeMin.X + ((MapRangeMax.X - MapRangeMin.X) /

2);

 MapCenter.Y = MapRangeMin.Y + ((MapRangeMax.Y - MapRangeMin.Y) /

2);

}

10. Next, still in the PostBeginPlay() function, calculate the extents in each axis

of the map by starting with the MapCenter and adding or subtracting the

SphereRadius of the MapExtentsComponent.

MapRangeMin.X = MapCenter.X - MapExtentsComponent.S phereRadius;

MapRangeMax.X = MapCenter.X + MapExtentsComponent.S phereRadius;

MapRangeMin.Y = MapCenter.Y - MapExtentsComponent.S phereRadius;

MapRangeMax.Y = MapCenter.Y + MapExtentsComponent.S phereRadius;

11. Finally, create the DrawSphereComponent with e default radius of 1024.0

and using the color green. Also, set the value of bForwardAlwaysUp to True in

the default properties as this is the most likely the desired functionality.

defaultproperties

{

 Begin Object Class=DrawSphereComponent Name=Draw Sphere0

 SphereColor=(R=0,G=255,B=0,A=255)

 SphereRadius=1024.000000

 End Object

 MapExtentsComponent=DrawSphere0

 Components.Add(DrawSphere0)

 bForwardAlwaysUp=True

}

12. Save the script to preserve your progress.

TUTORIAL 13.5 – THE MINIMAP, PART II: THE
MINIMAPGAME CLASS

This tutorial focuses on the creation of the new Minimap gametype class. Its

purpose is simply to hold a reference to the MU_Minimap actor placed within the

map and tell the game to use the new HUD class we will create in subsequent

tutorials.

1. Open ConTEXT and create a new file named MinimapGame.uc using the

UnrealScript highlighter.

2. Declare the new MInimapGame class extending from the UTDeathMatch class.

class MinimapGame extends UTDeathMatch;

3. This class has one variable to declare, a MU_Minimap object reference named

GameMInimap.

var MU_Minimap GameMinimap;

4. When the game initializes, we must populate this variable with a reference to

the MU_Minimap actor placed within the map. Override the InitGame() function

making sure to call the parent class’s version of the function.

function InitGame(string Options, out string Error Message)

{

 Super.InitGame(Options,ErrorMessage);

}

5. Inside the InitGame() function, a local MU_Minimap variable is needed.

local MU_Minimap ThisMinimap;

6. An AllActors iterator is used to find the MU_Minimap actor within the level and

assign it to the GameMinimap variable.

foreach

AllActors(class'MasteringUnrealScript.MU_Minimap',T hisMinimap)

{

 GameMinimap = ThisMinimap;

 break;

}

7. In the default properties, the HUDType variable of the gametype is overridden

to force the HUD class we will create to be used.

HUDType=Class'MasteringUnrealScript.MinimapHUD'

8. Also, the the MapPrefixes(0) variable is overridden to determine what maps

are associated with this gametype.

MapPrefixes(0)="COM"

9. Save the script to preserve your work.

TUTORIAL 13.6 – THE MINIMAP, PART III:
MINIMAPHUD INITIAL SETUP

With the minimap actor and gametype classes out of the way, we turn our

attention to the HUD class. In this tutorial, we will focus on declaring the class

and its variables as well as setting some default properties for those variables.

1. Open ConTEXT and create a new file named MinimapHUD.uc using the

UnrealScript highlighter.

2. Declare the MinimapHUD class extending from the UTHUD class.

class MinimapHUD extends UTHUD;

3. This class will also hold its own reference to the minimap actor in the level.

var MU_Minimap GameMinimap;

4. A Float variable named TileSize will hold a value specifying the amount of the

full map that will be displayed at any time. So if the full map texture is

2048x2048, and this value is 0.25, then the portion of the map texture that

would be displayed would be 512x512.

var Float TileSize;

Figure 13.11 – The portion of the map drawn using TileSize values of

0.25 and 0.5.

5. An Int variable named MapDim represents the dimensions of the map as

drawn on the screen at the default resolution of 1024x768.

var Int MapDim;

Figure 13.12 – MapDim specifies the dimensions of the map as drawn on

screen.

6. Another Int variable specifies the size of the box representing the players on

the map at the default resolution of 1024x768.

var Int BoxSize;

Figure 13.13 – BoxSize specifies the dimensions of the player box as

drawn on screen.

7. The last variable is an array of two colors which are used to draw the players

on the map. One of the colors is for the owner of the HUD and the other color is

for all the other players in themap.

var Color PlayerColors[2];

8. The default properties block should be fairly straightforward.

defaultproperties

{

 MapDim=256

 BoxSize=12

 PlayerColors(0)=(R=255,G=255,B=255,A=255)

 PlayerColors(1)=(R=96,G=255,B=96,A=255)

 TileSize=0.4

 MapPosition=(X=0.000000,Y=0.000000)

}

9. Save the script to preserve your progress.

TUTORIAL 13.7 - THE MINIMAP, PART IV:
MINIMAPHUD FUNCTIONS

Before we move on to implementing the functionality for drawing the map, the

PostBeginPlay() and DrawHUD() functions need to be overridden in the

MinimapHUD class and a new function named GetPlayerHeading() is added.

1. Open ConTEXT and the MinimapHUD.uc file.

2. First, the PostBeginPlay() function is overridden and used to assign the

gametype’s reference to the minimap actor in the map to the GameMInimap

variable in this class.

simulated function PostBeginPlay()

{

 Super.PostBeginPlay();

 GameMinimap = MinimapGame(WorldInfo.Game).GameMi nimap;

}

3. Next, the DrawHUD() function is overridden and a call to the function which

will be responsible for drawing the map, the DrawMap() function, is added. This

will essentially force the map to be drawn at all times whether the player is alive

or dead an whether the game is still going or has ended.

function DrawHUD()

{

 Super.DrawHUD();

 DrawMap();

}

4. The GetPlayerHeading() function is very much like the GetRadianHeading()

function found in the Compass class created previously. Copy this function from

the Compass class and paste it into the MinimapHUD class now. The code below

should now be in the MinimapHUD class.

function float GetRadianHeading()

{

 local Vector v;

 local Rotator r;

 local float f;

 r.Yaw = GetYaw();

 v = vector(r);

 f = GetHeadingAngle(v);

 f = UnwindHeading(f);

 while (f < 0)

 f += PI * 2.0f;

 return f;

}

5. Change the name of the function to GetPlayerHeading()

function float GetPlayerHeading()

{

 local Vector v;

 local Rotator r;

 local float f;

 r.Yaw = GetYaw();

 v = vector(r);

 f = GetHeadingAngle(v);

 f = UnwindHeading(f);

 while (f < 0)

 f += PI * 2.0f;

 return f;

}

6. Next, change the line that reads:

r.Yaw = GetYaw();

To read:

r.Yaw = PlayerOwner.Pawn.Rotation.Yaw;

7. Save the script to preserve your work.

TUTORIAL 13.8 – THE MINIMAP, PART V:
DRAWMAP() INITIAL SETUP

The DrawMap() function is responsible for performing all the remaining

necessary calculations and drawing the map to the screen. In this tutorial, the

function and all local variables will be declared.

1. Open ConTEXT and the MinimapHUD.uc script.

2. Declare the DrawMap function.

function DrawMap()

{

}

3. Two local Floats will hold the headings for the direction of North as specified

by the minimap actor in the map and for the direction the player is currently

facing.

local Float TrueNorth;

local Float PlayerHeading;

4. Declare local Float variables for the rotation of the map and the rotation of the

compass overlay

local Float MapRotation;

local Float CompassRotation;

5. Several local Vector variables are declared. Their uses will be explained in

detail later.

local Vector PlayerPos;

local Vector ClampedPlayerPos;

local Vector RotPlayerPos;

local Vector DisplayPlayerPos;

local vector StartPos;

6. The minimap material uses a transparency mask to force the map to display in

a circular shape. In order to move this mask to the proper location, the R and G

components of a Vector Parameter are added to the texture coordinates to offset

the position of the mask texture. A LinearColor local variable is needed to pass

the appropriate value to the Vector Parameter in the material.

local LinearColor MapOffset;

7. A local Float variable holds the distance in world space coordinates covered by

the map. For simplicity, we are requiring that a square map texture be used and

thus only one range is needed.

local Float ActualMapRange;

8. Finally, a local Controller variable is used with an iterator to draw the positions

of all the players within the map.

local Controller C;

9. Before moving on, the location the map will be drawn to on the screen as well

as the size of the adjusted size of the map and player boxes can be set. The

MapPosition variable of the class holds relative position values. Multiplying these

by the width and height of the viewport will result in the absolute position at

which to draw the map. The current width and height of the viewport are

provided in the form of the FullWidth and FullHeight variables.

MapPosition.X = default.MapPosition.X * FullWidth;

MapPosition.Y = default.MapPosition.Y * FullHeight;

10. The size of the map and player boxes is calculated each frame by multiplying

the default values of these variables by the scaling factor for the viewport at its

current resolution. This scaling factor is held in the ResolutionScale variable.

MapDim = default.MapDim * ResolutionScale;

BoxSize = default.BoxSize * ResolutionScale;

11. Save the script to preserve your progress.

TUTORIAL 13.9 – THE MINIMAP, PART VI:
PLAYERPOS AND CLAMPEDPLAYERPOS

The PlayerPos and ClampedPlayerPos variables hold the player’s current location

as a normalized offset from the center of the map. If you consider the length of

the full map being 1.0 in each direction, each component of these variables can

have a value between -0.5 and 0.5 since they represent offsets from the center.

You may be wondering why use an offset from the center of the map. The reason

is because the map will be rotated around its center inside of the material and

we need to know the position relative to that in order to calculate everything

correctly as you will see later on.

Of course, before we can calculate normalized values, we must know the length

the map covers in world space coordinate values. This is where we begin in this

tutorial.

1. Open ConTEXT and the MinimapHUD.uc script.

2. The ActualMapRange is calculated by taking the larger of the two ranges

between the X-axis and the Y-axis, though they should be equal. This merely a

failsafe. The range of each axis is calculated by taking the difference between the

values set in the MapRandMin and MapRangeMax elements of the GameMinimap.

ActualMapRange = FMax(GameMinimap.MapRangeMax.X -

GameMinimap.MapRangeMin.X,

 GameMinimap.MapRangeMax.Y - GameMinimap.Ma pRangeMin.Y);

3. This next part is tricky because when taking the screenshot of the level to use

as the map, you must use the Top viewport inside of UnrealEd since this gives

you no perspective distortion. However, the axes as displayed in that viewport

have X in the vertical direction and Y in the horizontal direction. As far as the

HUD and Canvas are concerned, the horizontal direction of the viewport is X and

the vertical direction is Y. To complicate matters even more, the X-axis inside of

UnrealEd as seen from the Top viewport increases as it moves from bottom to

top, while the game’s viewport increases as it moves from top to bottom.

It boils down to the axes must be swapped and when dealing with the X-axis

world coordinates, the values must be the opposite sign. This will align the world

space coordinates as they would be in the Top viewport in UnrealEd with the way

they are handled with respect to the HUD.

Let’s start with the X component of the PlayerPos. To get the normalized offset

from the center, the map’s center must be subtracted from the location of the

player. Then that value must be divided by the range we just calculated.

Remember that the X component of a position in the HUD corresponds to the Y

component of world space locations.

PlayerPos.X = (PlayerOwner.Pawn.Location.Y –

GameMinimap.MapCenter.Y) / ActualMapRange;

4. The Y component of the PlayerPos corresponds to the X component of the

world space location, but must be multiplied by -1 in order to get the opposite

value. The easiest way to achieve this is simply to swap the order of the

subtraction.

PlayerPos.Y = (GameMinimap.MapCenter.X -

PlayerOwner.Pawn.Location.X) / ActualMapRange;

5. So that gives us the player’s position on the map, but what happens when the

player is very close to one of the edges? Since the minimap is designed to show

the player’s location in the center with the map all around it, we run the risk of

the map texture tiling if we allow the player to get close to the edge while still

displaying the player in the center of the minimap. To account for this, we will

use the ClampedPlayerPos variable to hold a second location which is limited to

always be just far enough from the edge to never allow any tiling.

Figure 13.14 – The map drawn without clamping on the left, and with

clamping on the right.

To do this, the FClamp() function is used. By passing the value to be clamped

along with the two limits to clamp it within, we can assure that the positions will

always be within a safe range. The two limits will be:

-0.5 + (TileSize / 2.0)

and

0.5 - (TileSize / 2.0)

We’ve already mentioned the normalized offset values are between -0.5 and 0.5.

Adding or subtracting half the portion of the map being displayed from these will

make sure the portion never overlaps causing tiling of the map texture.

Clamp the X component of the player’s position now.

ClampedPlayerPos.X = FClamp(PlayerPos.X,

 -0.5 + (TileSize / 2.0),

 0.5 - (TileSize / 2.0));

6. Now do the same for the Y component.

ClampedPlayerPos.Y = FClamp(PlayerPos.Y,

 -0.5 + (TileSize / 2.0),

 0.5 - (TileSize / 2.0));

7. Save the script to preserve your work.

TUTORIAL 13.10 – THE MINIMAP, PART VII: MAP
ROTATION

Now the fun begins as the map must be rotated to account for the direction the

player is facing. Rotating the map itself is actually extremely easy; we just pass

a radian value to a Scalar Parameter within the material the drives a Rotator

expression. Making this even easier, the Rotator within the material will rotate

the opposite direction of the rotation calculated by the GetPlayerHeading() or

GetRadianHeading() functions which is ideal since the map should rotate the

opposite direction that the player is turning.

The real fun part is calculating the rotated position of the player within the map.

We know the player’s position relative to the center of the texture, but the

moment that texture gets rotated, the position we just calculated no longer

corresponds to the spot on the map where the player should be displayed. With a

little trigonometry, though, we can calculate the rotated position. First, we need

to know how much to rotate everything.

1. Open ConTEXT and the MinimapHUD.uc script.

2. The TrueNorth and PlayerHeading variables need to be populated with the

appropriate radian values.

TrueNorth = GameMinimap.GetRadianHeading();

Playerheading = GetPlayerHeading();

3. Now, we can use those values to set the MapRotation, CompassRotation, and

InverseRotation values, but how we do that is dependent on the value of the

bForwardAlwaysUp variable of the GameMInimap minimap actor. Create an If-

statement with this variable’s value as the condition.

if(GameMinimap.bForwardAlwaysUp)

{

}

else

{

}

4. If bForwardAlwaysUp is True, the map is rotated based solely on the

PlayerHeading and the CompassRotation is the difference between the

Playerheading and TrueNorth.

MapRotation = PlayerHeading;

CompassRotation = PlayerHeading - TrueNorth;

5. If bForwardAlwaysUp is False, the map is rotated based on the difference

between the PlayerHeading and TrueNorth and the CompassRotation is the same

as the MapRotation.

MapRotation = PlayerHeading - TrueNorth;

CompassRotation = MapRotation;

6. The basic idea when rotating a point around another point is to use the

parametric equation of a circle:

The radius in this case, would be the distance from the center of the map to the

player’s position, or the length of the PlayerPos vector.

VSize(PlayerPos)

The angle of rotation requires a little more complexity to decipher. The angle of

rotation is the angle between the positive X-axis, or 0 radians, and the vector

from the center of the map to the position the player would be after being

rotated.

Figure 13.15 – The angle needed to calculate the rotated player’s

position.

You may be thinking to yourself, “The whole point of this is to calculate the

position of the player after being rotated. How do we find that angle if we don’t

know the position?” We do know the player’s actual location and we can find the

angle between the positive X-axis and the vector from the center of the map to

that location. This is done by passing the Y and X components of the player’s

position to the Atan() function which calculates the arctangent given the lengths

of the opposite and adjacent sides of a triangle. For example:

Atan(PlayerPos.Y, PlayerPos.X)

Figure 13.16 – The angle to the player’s actual position.

And we know the amount that position is to be rotated. By subtracting the

MapRotation from the angle between the positive X-axis and the player’s

position, we can calculate the angle between the positive X-axis and the rotated

position. So the actual value of in the equations above is:

Atan(PlayerPos.Y, PlayerPos.X) – MapRotation

Figure 13.17 – Subtracting the angle rotation leaves the desired angle.

Putting it all together, the rotated player position is calculated as:

DisplayPlayerPos.X = VSize(PlayerPos) * Cos(ATan(P layerPos.Y,

PlayerPos.X) - MapRotation);

DisplayPlayerPos.Y = VSize(PlayerPos) * Sin(ATan(P layerPos.Y,

PlayerPos.X) - MapRotation);

7. Notice we have set the DisplayPlayerPos by rotating the PlayerPos. We also

need to set the RotPlayerPos by rotating the ClampedPlayerPos in the same

manner.

RotPlayerPos.X = VSize(ClampedPlayerPos) * Cos(

ATan(ClampedPlayerPos.Y, ClampedPlayerPos.X) - MapR otation);

RotPlayerPos.Y = VSize(ClampedPlayerPos) * Sin(

ATan(ClampedPlayerPos.Y, ClampedPlayerPos.X) - MapR otation);

8. The DisplayPlayerPos is the actual position of the player on the rotated map

and is used to draw the player box. The RotPlayerPos is the position on the map

that represents the center of the displayed portion of the map. This is the

position that is used to find the StartPos, or the top left corner of the portion of

the map to be displayed. This is calculated by adding 0.5 to both the X and Y

components since they are offsets from the center and we need absolute values

now. Then, half the TileSize is subtracted from each. The result is then clamped

between 0.0 and 1.0 minus the TileSize just as one last precaution to make sure

no tiling occurs, though this value should already fall within these limits.

StartPos.X = FClamp(RotPlayerPos.X + (0.5 - (TileSi ze /

2.0)),0.0,1.0 - TileSize);

StartPos.Y = FClamp(RotPlayerPos.Y + (0.5 - (TileSi ze /

2.0)),0.0,1.0 - TileSize);

Figure 13.18 – The upper left corner of the portion to be drawn is the

StartPos.

9. The final aspect of rotating the map is to set the MapOffset values to be

passed to the material to pan the transparency mask correctly. The R and G

components of the MapOffset inversely correspond to the X and Y components of

the RotPlayerPos. In other words, the RotPlayerPos values are multiplied by -1

and assigned to the R and G components of the MapOffset. But first, they are

clamped to the same range the ClampedPlayerRot values were clamped to

previously, again, as one last precaution.

MapOffset.R = FClamp(-1.0 * RotPlayerPos.X,

 -0.5 + (TileSize / 2.0),

 0.5 - (TileSize / 2.0));

MapOffset.G = FClamp(-1.0 * RotPlayerPos.Y,

 -0.5 + (TileSize / 2.0),

 0.5 - (TileSize / 2.0));

10. Save the script to preserve your progress.

TUTORIAL 13.11 – THE MINIMAP, PART VII: SET
MATERIAL PARAMS AND DRAW MAP

Everything needed to commence updating the material parameters and drawing

the map has been calculated and is ready to go. This tutorial will cover setting

the parameters of the map and compass overlay materials as well as drawing the

map, compass overlay, and player box.

1. Open ConTEXT and the MinimapHUD.uc script.

2. The map material has MapRotation, TileSize and MapOffset parameters.

MapRotation is a scalar parameter that controls the rotation of the map texture.

TileSize is also a scalar parameter that controls the tiling, and consequently the

size, of the transparency mask. MapOffset is a vector parameter that controls the

position of the transparency mask. The compass overlay material has a single

scalar parameter, CompassRotation, which controls the rotation of the overlay.

These can all be set using the appropriate Set*Paramater() function of the

MaterialInstanceConstant class and passing the name of the parameter and the

value to assign to it. The variables holding the values for each parameter have

been named the same as the parameter names to make it easy to know what

goes with what.

GameMinimap.Minimap.SetScalarParameterValue('MapRot ation',MapRotatio

n);

GameMinimap.Minimap.SetScalarParameterValue('TileSi ze',TileSize);

GameMinimap.Minimap.SetVectorParameterValue('MapOff set',MapOffset);

GameMinimap.CompassOverlay.SetScalarParameterValue('CompassRotation'

,CompassRotation);

3. Before we get into any drawing, we should briefly discuss how the HUD draws

items to the screen. In reality, the HUD doesn’t ever do any drawing of its own.

Another class, Canvas, contains all the drawing functionality. The HUD classes

contain a reference to the current Canavs and that is used any time an item

need to be drawn to the screen. Drawing the map is fairly simple once you

understand how things work. One important thing to keep in mind is the order in

which you draw items as an item drawn after another in the same location will

draw on top of the first..

First, the drawing position of the Canvas needs to be set to the location the map

should be drawn. This is specified by the MapPosition variable.

Canvas.SetPos(MapPosition.X,MapPosition.Y);

4. Next, the map is drawn using the DrawMaterialTile() function of the Canvas.

This function takes in the material to be drawn, the width and height of the tile

to be drawn, the position within the material to begin drawing, and the width and

height of the portion of the material to be drawn.

Canvas.DrawMaterialTile(GameMinimap.Minimap,

 MapDim,

 MapDim,

 StartPos.X,

 StartPos.Y,

 TileSize,

 TileSize);

Figure 13.19 – The map has been drawn to the screen.

5. Next, the position of the Canvas is set to the location to draw the player at.

This means the DisplayPlayerPos needs to be converted from an offset to an

absolute position, which is done by adding 0.5. Then, it must be converted to an

offset from the StartPos since only a portion of the full map is drawn by

subtracting the StartPos. That value is divided by the current TileSize to

normalize the value to the range 0.0-1.0. The normalized position in UV

coordinates is multiplied by the dimensions of the map tile, or MapDim, to

convert it to screen coordinates. Then, half the player box size is subtracted so

that the player box will be centered on the location. Finally, the whole thing is

added to the MapPosition.

Canvas.SetPos(MapPosition.X + MapDim * (((Displa yPlayerPos.X +

0.5) - StartPos.X) / TileSize) - (BoxSize / 2),MapP osition.Y +

MapDim * (((DisplayPlayerPos.Y + 0.5) - StartPos.Y) / TileSize) -

(BoxSize / 2));

6. The DrawColor of the canvas is set to the first element in the PlayerColors

array as this is the color we have chosen for the player.

Canvas.SetDrawColor(PlayerColors[0].R,

 PlayerColors[0].G,

 PlayerColors[0].B,

 PlayerColors[0].A);

7. Now, the player box is drawn with the appropriate size.

Canvas.DrawBox(BoxSize,BoxSize);

Figure 13.20 – The player’s box has been drawn to the screen on top of

the map.

8. To draw the compass overlay, the position of the Canvas is set back to the

MapPosition.

Canvas.SetPos(MapPosition.X,MapPosition.Y);

9. Then, the CompassOverlay material of the GameMinimap is drawn using the

DrawMaterialTile() function again.

Canvas.DrawMaterialTile(GameMinimap.CompassOverlay, MapDim,MapDim,0.0

,0.0,1.0,1.0);

Figure 13.21 – The compass overlay has now been drawn on top of the

map.

10. Save the script to preserve your progress.

TUTORIAL 13.12 – THE MINIMAP, PART VIII:
DRAWING OTHER PLAYERS

In this tutorial, each of the other players within the level will be drawn on the

map assuming they are located within the range visible in the minimap.

1. Open ConTEXT and the MinimapHUD.uc script.

2. After the code that draws the player but before the compass overlay is drawn,

set up an AllControllers iterator using the WorldInfo reference and passing the

base Controller class and the C local variable declared previously. The reason for

doing this after the player box is drawn and before the compass overlay is drawn

is two-fold. First, it allows us to reuse some of the variables used to calculate the

player’s position with no worries about overwriting their values. Second, by

drawing the compass overlay on top of everything, it hides the blinking out of

existence of the other players’ boxes when they leave the viewable area of the

map, resulting in a nice clean transition.

foreach WorldInfo.AllControllers(class'Controller', C)

{

}

3. Now, use an If-statement to makes sure the current Controller in the iterator

is not the PlayerOwner so we don’t draw over it.

if(PlayerController(C) != PlayerOwner)

{

}

4. Inside this If-statement, the normalized offset position of the current

Controller’s Pawn needs to be calculated. This is the same as the

DisplayePlayerPos calculated for the player earlier only for the current Controller.

It is probably easiest just to copy the code calculating the PlayerPos and

DisplayPlayerPos already present and paste them into the If-statement.

PlayerPos.X = (PlayerOwner.Pawn.Location.Y -

GameMinimap.MapCenter.Y) / ActualMapRange;

PlayerPos.Y = (GameMinimap.MapCenter.X -

PlayerOwner.Pawn.Location.X) / ActualMapRange;

DisplayPlayerPos.X = VSize(PlayerPos) * Cos(ATan(P layerPos.Y,

PlayerPos.X) - MapRotation);

DisplayPlayerPos.Y = VSize(PlayerPos) * Sin(ATan(P layerPos.Y,

PlayerPos.X) - MapRotation);

Now, simply replace any occurrences of the term PlayerOwner with the C

variable.

PlayerPos.X = (C.Pawn.Location.Y - GameMinimap.MapC enter.Y) /

ActualMapRange;

PlayerPos.Y = (GameMinimap.MapCenter.X - C.Pawn.Loc ation.X) /

ActualMapRange;

DisplayPlayerPos.X = VSize(PlayerPos) * Cos(ATan(P layerPos.Y,

PlayerPos.X) - MapRotation);

DisplayPlayerPos.Y = VSize(PlayerPos) * Sin(ATan(P layerPos.Y,

PlayerPos.X) - MapRotation);

5. That gives us the actual rotated position of the current Controller’s Pawn

relative to the center of the map. Now, we must make sure this position is within

a specific distance from the player’s rotated position to determine whether this

Controller should be drawn or not.

The VSize() function is used to get the distance from the player’s position to the

Controller’s position.

VSize(DisplayPlayerPos - RotPlayerPos)

The upper limit for this distance is basically half the TileSize less half the

diagonal length of the player box. The only problem is the TileSize is normalized

to the 0.0-1.0 range and the BoxSize is in screen coordinates so it must be

normalized.

Half the diagonal length of the player box is calculated like so:

Sqrt(2 * Square(BoxSize / 2))

To normalize that length, it must then be divided by the dimensions of the map

and multipled by the TileSize.

(TileSize * Sqrt(2 * Square(BoxSize / 2)) / MapDim)

So the final distance is half the TileSize minus that calculation.

((TileSize / 2.0) - (TileSize * Sqrt(2 * Square(Box Size / 2)) /

MapDim))

Now, make an If-statement comparing the distance between the two players and

this distance.

if(VSize(DisplayPlayerPos - RotPlayerPos) <= ((Tile Size / 2.0) -

(TileSize * Sqrt(2 * Square(BoxSize / 2)) / MapDim)))

{

}

6. Copy the three lines of code that draw the player’s box on the screen and

paste them inside the If-statement.

Canvas.SetPos(MapPosition.X + MapDim * (((Displa yPlayerPos.X +

0.5) - StartPos.X) / TileSize) - (BoxSize / 2),MapP osition.Y +

MapDim * (((DisplayPlayerPos.Y + 0.5) - StartPos.Y) / TileSize) -

(BoxSize / 2));

Canvas.SetDrawColor(PlayerColors[0].R,

 PlayerColors[0].G,

 PlayerColors[0].B,

 PlayerColors[0].A);

Canvas.DrawBox(BoxSize,BoxSize);

7. Change the index of the PlayerColors array being accessed in the

SetDrawColor() function call to the second element.

Canvas.SetDrawColor(PlayerColors[1].R,

 PlayerColors[1].G,

 PlayerColors[1].B,

 PlayerColors[1].A);

Figure 13.22 – The other players in the level now appear on the map.

8. Save the script and compile. Make sure the CompassContent.upk package

provided on the DVD with the files for this chapter is located within the

Unpublished\CookedPC directory. Fix any syntax errors which may be present.

TUTORIAL 13.13 – THE MINIMAP, PART IX: MAP
SETUP AND SCREENSHOT

Now it is time to start to put everything into place to test out the minimap

system. First, we need to set up a map with the MU_Minimap actor and et a

screenshot of it to use as the map.

1. Open UnrealEd and open the COM-CH_13_Minimap.ut3 map provided on the

DVD with the files for this chapter.

Figure 13.23 – The COM-CH_13_Minimap.ut3 map.

2. Open the Actor Classes Browser and select the MU_Minimap class listed under

Actor->Compass->MU_Minimap.

Figure 13.24 – The MU_Minimap class is selected.

3. In the viewport, add a new MU_Minimap actor to the map. Place it near the

center of the map as best you can. It doesn’t have to be exact, just close. You

may also rotate the actor around the Y-axis if you wish to adjust the direction to

be used as North in this map.

Figure 13.25 – The placement of the MU_Minimap actor.

4. In the Top viewport, zoom out a good ways, and then open the Properties

Window with the MU_Minimap actor selected.

Find the SphereRadius property in the MU_Minimap category by expanding the

MapExtentsComponent section. Increase the value of this property until the

sphere in the viewport encompasses the entire playable area of the map. Try to

leave some empty space around the outside of the map as well. A good value for

this property would be around 1600.

Figure 13.26 – The radius of the sphere has been adjusted.

5. Save this map now as we are going to be tearing it apart over the remainder

of this tutorial.

6. Before we can assign a map material and compass overlay material, we need

to take the screenshot of the level to be used for the minimap. Because this is an

indoor level, taking a screenshot from the Top viewport requires a little more

work than for an outdoor map; mainly the ceiling needs to be removed so we

can see into the rooms in the Top viewport.

a. This isn’t all that difficult in this case. Select one of the static meshes making

up the ceiling and then right-click on it and choose Select Matching Static Meshes

(This Class). This will select the ceiling and the floor.

Figure 13.27 – All of the floor and ceiling meshes are selected.

b. In the Front or Side viewport, Hold Ctrl + Alt + Shift + Right Mouse Button

and then drag the marquee selection around the floor meshes that are selected.

This will remove them from the selection, leaving only the ceiling selected. Press

the Delete key to remove the ceiling.

Figure 13.28 – The marquee selection removes the items from the

selection.

c. Now, select the two light meshes in the center of each room, but do not select

the light actors themselves, and press Delete again to remove them.

Figure 13.29 – The light meshes are removed.

d. Finally, select the blue Additive brush that surrounds the entire map and press

Delete to remove it.

Figure 13.30 – The brush is removed.

e. Finally, press the Build All button in the main toolbar to update the BSP and

lighting.

7. Select the MU_Minimap actor and then right-click on the Sheet Brush builder

button in the Toolbox to open the Sheet Brush options. Set the X and Y values to

3200 (the SphereRadius multiplied by 2) and click Build. The red builder brush

should update in the viewports.

Figure 13.31 – The builder brush is centered on the MU_Minimap actor.

8. Select the red builder brush and move it down below the geometry present in

the level. Find and select the M_Black material located in the CompassContent

package in the Generic Browsr and then click the CSG: Add button in the Toolbox

to create an additive sheet using the red builder brush with the M_Black material

applied.

Figure 13.32 – The sheet brush has been added.

9. Maximize the Top viewport and press the Lit button in its toolbar to display a

lit view of the map. Next, press the G key to toggle on game mode. You should

basically now see what will become the map texture used for the minimap.

Figure 13.33 – The Top viewport showing the lit view.

10. Getting from this point to the finished map texture is fairly easy.

a. Zoom out until the black sheet just barely fits within the viewport and press

the Print Screen key.

Figure 13.34 – The sheet brush fills the viewport.

b. Now, open an image editing program and create a new image. We will be

using Photoshop for this example.

Figure 13.35 – A new image is created.

c. Press Ctrl + V to paste the copied screen shot into the image.

Figure 13.36 – The captured screenshot is pasted into the image.

d. Select the black portion representing the map texture and crop the image to

that area.

Figure 13.37 – The image is cropped to the black area.

e. Now scale the image or adjust its size so that it is 2048x2048.

Figure 13.38 – The image is scaled.

f. Save the file in a format Unreal can import. A 24-bit Targa (.tga) file usually

works best.

11. You may save the map in UnrealEd if you wish to save it as you may need it

later to grab another screen shot. Just make sure you save it with a different

name so you don’t overwrite the real map.

TUTORIAL 13.14 – THE MINIMAP, PART X:
MINIMAP MATERIAL AND FINISHING TOUCHES

With the image for the minimap created, it is now time to import it into UnrealEd

and create the MaterialInstanceConstants for the minimap and CompassOverlay.

These must also be assigned to the corresponding properties of the MU_Minimap

actor within the level.

1. Open UnrealEd and the map from the previous tutorial with the MU_Minimap

actor added, not the map used for the screenshot.

2. Open the Generic Browser and select Import from the File menu. Select the

map image you saved in the previous tutorial and click Open.

a. In the dialog that appears, select the COM-CH_13_Minimap package in the

dropdown list of packages and name enter a new name if you like, or leave it at

the default of the name of the file.

Figure 13.39 – The level’s package is selected.

b. In the Options list, set the LODGroup to TEXTUREGROUP_UI. This is important

because Unreal Tournament 3 uses these groups to limit the sizes of textures.

The UI group will allow the texture to be displayed at its full 2048x2048 size so

no quality is lost beyond the usual compression artifacts.

Figure 13.40 – The TEXTUREGROUP_UI LODGRoup is selected.

c. If you want to speed up the import process, you can also check the

DeferCompression option as well. This will keep the compression from being

performed until you save the package, or in this case the map. Of course this will

slow down the saving process so it is a wash in the end.

Figure 13.41 – The DeferCompression option is selected.

d. Click OK to import the texture.

Note: The package you choose should be the name of the level you are using. If

you named it something different, choose that from the package list instead.

3. Right-click on the newly imported Texture in the Generic Browser, or double-

click it, to open its properties. Scroll down to the SRGB property and uncheck it.

This turns off gamma correction. If this option is not turned off, the texture will

appear very, very dark when displayed on the screen.

Figure 13.42 – The SRGB flag is toggled off.

4. Now, find the M_minimap material in the CompassContent package. Right-

click on it and choose New Material Instance Constant.

Figure 13.43 – A new MaterialInstanceConstant is created from the

M_minimap material.

a. In the dialog that appears, select the COM-CH_13_Minimap package in the

dropdown list of packages and enter a new name if you like, or leave it at the

default of M_minimap_INST. Click OK.

Note: The package you choose should be the name of the level you are using. If

you named it something different, choose that from the package list instead.

5. When the Material Instance Editor appears for the new

MaterialInstanceConstant, expand the ScalarParameterValues section and click

the checkboxes next to both the parameters listed. Then expand the

TextureParameterValues section and click the checkboxes next to each of those

parameters as well. Finally, expand the VectorParameterValues section and click

the checkbox next the parameter found there.

Figure 13.44 – The MaterialInstance Editor.

6. Select the map texture you imported and then press the Use Current Selection

In Browser button of the MinimapTex parameter in the TextureParameterValues

section to assign the map texture to the material.

Figure 13.45 – The map texture replaces the default.

7. Back in the CompassContent package, right-click on the M_compass material

and choose New Material Instance Constant.

Figure 13.46 – A new MaterialInstanceConstant is created from the

M_compass material.

a. In the dialog that appears, select the COM-CH_13_Minimap package in the

dropdown list of packages and enter a new name if you like, or leave it at the

default of M_compass_INST. Click OK.

Note: The package you choose should be the name of the level you are using. If

you named it something different, choose that from the package list instead.

8. When the Material Instance Editor appears for the new

MaterialInstanceConstant, expand the ScalarParameterValues section and click

the checkboxes next to both the parameters listed. Then expand the

TextureParameterValues section and click the checkboxes next to each of those

parameters as well.

9. Select the MU_Minimap actor in the level and open its properties by pressing

F4. Select the minimap MaterialInstanceConstant you just created and then click

the Use Current Selection In Browser button for the Minimap property. Then

select the compass overlay MaterialInstanceConstant and click the Use Current

Selection In Browser button for the CompassOverlay property.

Figure 13.47 – The MaterialInstanceConstants have been assigned to the

MU_Minimap actor.

10. Save this map with any name you wish as long as it begins with “COM-“ and

then either publish it by clicking the Publish Map buttonin the main toolbar or

since this is just a quick test, save a copy of it to the

Published\CookedPC\CustomMaps folder. Don’t forget to copy the

CompassContent.upk to the Published\CookedPC directory as well.

TUTORIAL 13.15 – THE MINIMAP, PART XI:
TESTING THE MINIMAP

All of the code is in place and we now have a map set up to take advantage of

the new minimap system. It’s time to test the minimap system in action.

1. Load up UT3 and login or choose to play offline.

2. Select an Instant Action game.

Figure 13.48 – Instant Action is selected.

3. Choose the MinimapGame gametype from the next menu.

Figure 13.49 – The MinimapGame is selected.

4. You should now see the map you saved in the previous tutorial as the only

map in the list. Double-click on this map.

Figure 13.50 – The map is chosen.

5. Set the number of bots to 2 or less on the next menu as there are only

enough PlayerStarts in this small level for 2 bots to spawn besides the player.

Figure 13.51 – Bots are set up.

6. Start the game. As soon as the level loads, you should see the map displayed

in the upper left corner of the screen, though turning or moving will have no

effect on it until the match begins.

Figure 13.52 – The map appears on the screen.

7. Begin the match and you should now see the map reflect the actual location of

the player within the map. Moving and turning should now cause the map to

update. You should also see the bots displayed as green boxes when you are

near enough for them to be displayed.

Figure 13.53 – The map reflects the player’s rotation and location.

The minimap system should be working just as we expected. Obviously, the

effect would be much more useful and interesting in a larger, outdoor

environment. This small indoor map was simply a quick means of testing it out.

TUTORIAL 13.16 – THE CAPTURE VOLUME, PART
I: INITIAL SETUP

Our mapper is back, and he has a new request. His map is in need of a new

volume that he can connect to some cool effects. Up to this point, he has been

working entirely in Kismet, and has created some very complicated sequences to

achieve a couple very simple tasks. It has fallen on our shoulders to create this

new volume and to implement the necessary Kismet definitions to replace his

entire Kismet sequence.

After a meeting with him we have drafted the following list of specifications:

• It must be a placeable brush volume

• It should be Light Green in color, to set it apart from other brushes by

default

• It will have three output events in kismet

o Red Captured – When the red team accomplishes the capture

o Blue Captured – When the blue team accomplishes the capture

o Unstable – When contested or having its captured status change

• It will have a few configurable elements

o Time to Capture – an integer set in the editor for each volume

(default 3)

o Minimum number of players to be able to Capture (default 1)

o Rewarded Points – Rewarded to the capturers (default 1)

• It should have a timer, set to every half second, checking to see if the

capture is beginning

• It should be toggleable

Even if we stay at the fifty thousand foot view of this it is a complicated problem

to solve. We will approach this problem in parts, breaking this apart into the

major bullet points, as that seems to be the most straightforward.

We’ll begin by defining the Interface to be used by the volume.

1. Open ConTEXT and create a new file named ICaptureVolume.uc using the

UnrealScript highlighter.

2. Define the Interface for our new CaptureVolume.

interface ICaptureVolume;

a. Declare the OnToggle() function, which will tie into the enabled state of the

volume

function OnToggle(SeqAct_Toggle action);

b. Declare the CheckBeginCapture() function, which will be used to test the

occupants of our volume and returning whether the volume has begun being

captured.

function bool CheckBeginCapture();

c. The GetTouchingUTPawns() function is being used for its utility. It

accumulates all touching pawns and tosses them into the red or blue bowls,

which are then returned. Since we can only return a single value the out

variables are used. The function will return the overall count of characters within

the volume.

function int GetTouchingUTPawns(out array<UTPawn> r edTouching, out

array<UTPawn> blueTouching);

d. tCheckCapture() is the function hooked into our timer, and will be doing many

calculations behind the scenes.

function tCheckCapture();

e. The UpdateEvents() function is driving the output kismet interface, accepting

the flag for which event is being triggered.

function UpdateEvents(int flag);

3. Save this script to preserve your work.

4. With our interface clearly defined, it is time to lay down some pipe work for

the CaptureVolume itself. All volumes derive from the Volume class, and since

there are not any necessary things to derive from in the other derived classes,

we should follow suit. There isn’t a whole lot to this one, so we should just take

the step of writing this volume’s code.

a. Create a new file named CaptureVolume.uc using the UnrealScript highlighter.

b. Defining our class, implementing the ICaptureVolume Interface

class CaptureVolume extends Volume placeable

implements(ICaptureVolume) Config(UTBook);

c. We will now take a pitstop in the default properties. There is only one element

here of note, and that is the BrushColor. It accepts the same integer values as

we experienced in the compass tutorial.

defaultproperties

{

 // For UnrealEd And to avoid removal

 BrushColor = (B=128, G=255, R=128, A=255)

 bColored = True

 bStatic = false

}

d. We can compile at this point and actually see our new volume in the editor, if

we follow the steps previously described. This volume will work just as the other

volumes, and sow up in the volumes quick-listing, only this one will be a light

green.

Figure 13.54 - Our New CaptureVolume in the UnrealEditor

5. This is the point when things start getting tough. We are going to create a

number of variables for our mappers to be able to configure the various elements

of this volume. This is also the point when we can create a couple enumerations

to help the readability of our code. Below you will find a block of code that

contains inline commentary about the purpose of the variables. The default

properties are updated and appended to the end.

a. ECaptureEvent is an enumeration of the three triggered status. This is mainly

done for readability concerns, serving as a replacement for magic constants

floating in our code.

enum ECaptureEvent

{

 CAP_REDCONT,

 CAP_BLUECONT,

 CAP_UNSTABLE

};

b. ETeams is straight forward, and serves a similar purpose to the previous

enumeration.

enum ETeams

{

 RED_TEAM,

 BLUE_TEAM,

 NO_TEAM

};

c. Now we get into the meat of the class. iTimeToCapture is an integer variable

that controls the number of seconds required to capture the volume. Each of the

next three variables are available to the mapper, under the Capture subcategory,

controlled by the (Capture) statement.

var (Capture) int iTimeToCapture;

d. iPointReward is the reward granted to the capturing group, on an individual

basis. If the mapper chooses he doesn’t want a value here, she can change it to

0.

var (Capture) int iPointReward;

e. This variable is actually important. The volume will only be triggered if this

number of players are present within the volume.

var (Capture) int iMinimumPlayersForCapture;

f. These two variables are used to keep track of the state of the volume, i.e. who

is in control of it and who is trying to take control, respectively.

var int CapturingTeamID;

var int CapturedTeamID;

g. TimeCapturing keeps track of the Interval of time spent capturing this volume.

var float TimeCapturing;

h. In order to keep track of who is taking part in capturing this volume,

CapturingMembers is used.

var array<UTPawn> CapturingMembers;

i. This is used by the toggle routine to make sure that our volume is able to be

turned off or on as our mapper sees fit.

var bool bEnabled;

6. We should now update the default properties to reflect the new variables

default variables. The default properties block stands on its own now, but I will

point out the use of a constant from our enumeration beign assigned to

CapturedTeamID, setting the default value to a clearly defined value. The other

values have been handed down by our mapper.

defaultproperties

{

 // For UEd setup mainly.

 BrushColor = (B=128, G=255, R=128, A=255)

 bColored = True

 bStatic = false

 // Default values for the volume

 iMinimumPlayersForCapture = 1

 CapturedTeamID = NO_TEAM

 iTimeToCapture = 3

 iPointReward = 5

}

7. Save the script to preserve your progress.

TUTORIAL 13.17 – THE CAPTURE VOLUME, PART
II: TOUCH AND TIME

We have our volume in the editor, now we should step into some of the more

interesting aspects of the volume. There is one, in particular, that will prove to

be much easier if we address it off the bat; when we the volume is being

touched. This can be a very complicated matter, but luckily, we have been

granted an event function, Touch.

This Touch Event will trigger a timer that will confirm our captured state

changes. Timers are very useful for keeping track of things that do not need to

be checked every tick, but need to be checked at a time interval nonetheless.

You simply pass them a float value, whether it is recursive, and the callback

function that we are trying to have executed at this interval. Our specification

has already described this timer, so let’s get that taken care of as well.

1. Open ConTEXT and the CaptureVolume.uc script.

2. First we have to define our Touch event.

event Touch(Actor Other, PrimitiveComponent OtherCo mp, vector

HitLocation, vector HitNormal)

{

}

3. Within most derived functions it is in our interest to call the super version of

it, to avoid breaking dependency or expected value assignments.

Super.Touch(Other, OtherComp, HitLocation, Hitnorma l);

4. When our volume is enabled we will want to execute our timer, which is tied

to a function. We have the interval set to 0.5 seconds here, and we also pass

true as the second parameter to allow the timer to run every 0.5 seconds until

we stop it.

if (bEnabled) // If we are enabled... go crazy.

 SetTimer(0.5f, true, 'tCheckCapture');

5. Moving on from the Touch event, we have to deal with the touching issue. Our

utility function is going to prove itself to be invaluable, so let’s get this taken

care of now. Defining the function and its arguments.

function int GetTouchingUTPawns(out array<UTPawn> r edTouching, out

array<UTPawn> blueTouching)

{

}

6. The Count variable will be the inclusive, that is – both teams, number of

UTPawn’s within the volume. It will be returned at the end. P is used for

iterating, in just a moment.

local int Count;

local UTPawn P;

Count = 0;

7. Iterating through the necessary pawns is not as terrible as it may sound.

UnrealScript has a number of very useful iterators, but make sure you don’t use

them without purpose and thought. They can be very costly, especially within

tick functions.

foreach self.TouchingActors(class'UTPawn', P)

{

}

8. We want to make sure the Pawn is alive, and if not move on to the next one.

if (P == None || P.health <= 0 || P.Controller.IsDe ad() ||

P.GetTeam() == None)

{

 continue;

}

9. Granting that they have lived, we need to add them to the appropriate team.

if (P.GetTeam().TeamIndex == RED_TEAM)

{

 redTouching.AddItem(P);

 Count++;

}

else

{

 blueTouching.AddItem(P);

 Count++;

}

10. Finally returning the Count.

return Count;

11. Save the script to preserve your progress.

TUTORIAL 13.18 – THE CAPTURE VOLUME, PART
III: THE CAPTURED STATE

We now have a good portion of the volume mapped out, and the vision is coming

together. Our volume has a few interesting functions that serve a utility purpose,

or another, bu there are still a couple further hurdles to step over. Next we will

be stepping into the CheckBeginCapture routine, which is going to return the

Boolean truth of this situation.

1. Open ConTEXT and the CaptureVolume.uc script.

2. As usual, we need to define our function, as per our interface.

simulated function bool CheckBeginCapture()

{

}

3. We need a pair of arrays, to hold onto the red and blue pawns, the

calculations will be driven by them.

local array<UTPawn> redTouching;

local array<UTPawn> blueTouching;

4. Create a counter that is used to keep track of the size of the capturing team,

simplifying the final test.

local int Count;

5. We can use the GetTouchingUTPawns utility function to fill our arrays off the

bat.

GetTouchingUTPawns(redTouching, blueTouching);

6. Check the size, if there are no players in this volume, clear the timer and

return.

if (blueTouching.length == 0 && redTouching.length == 0)

{

 ClearTimer('tCheckCapture', self);

 return false;

}

7. If there is more than one team present we need to send the CAP_UNSTABLE

trigger, and return.

else if (!(blueTouching.length == 0 ^^ redTouching. length == 0))

{

 UpdateEvents(CAP_UNSTABLE);

 return false;

}

8. With those two tests out of the way we can rest assured that we only have

red or blue, but not both, teams present. Focusing on red first…

if (redTouching.length > 0)

{

}

a. Copy the players touching the volume into an array we will use later to do the

payout of points.

CapturingMembers = redTouching;

b. Get the count of the players here.

Count = redTouching.length;

c. Set the CapturingTeamID to the red team

CapturingTeamID = RED_TEAM;

9. And now mirror what we just did for the blue team.

else

{

 CapturingMembers = blueTouching;

 Count = blueTouching.length;

 CapturingTeamID = BLUE_TEAM;

}

10. Test the count to make sure that this volume is able to be captured now,

and make sure that the capturing team is not the captured team. This second

test is to ensure that the volume doesn’t get captured by the same team,

bloating scores.

if ((iMinimumPlayersForCapture <= Count) && (Captur ingTeamID !=

CapturedTeamID))

 return true;

else

 return false;

11. Save the script too preserve your work.

We now have a good majority of our class laid out. There are only a few

functions left to address, so it will not be too much longer for us to be completed

and see some really cool events in game.

TUTORIAL 13.19 – THE CAPTURE VOLUME, PART
IV: THE TIMER FUNCTION

The next step is going to be the timer function. This function is executed every

0.5 seconds, so it is good to keep that in mind, as real time game development

can be very unfriendly to inefficient functions.

1. Define our tCheckCapture function.

simulated function tCheckCapture()

{

}

2. We need to create a couple variables to help with the iteration we will be

doing later.

local UTPawn P;

local UTPlayerReplicationInfo ScorerPRI;

3. If the TimeCapturing is negative, clear its value.

if (TimeCapturing < 0)

 TimeCapturing = 0;

4. Now we call our CheckBeginCapture function, to see whether we need to be

triggering anything. If not we need to clear quite a few things. Note that we will

need to clear the timer when done.

if (!CheckBeginCapture())

{

 CapturingTeamID = NO_TEAM;

 TimeCapturing = 0;

 ClearTimer('tCheckCapture', self);

 return;

}

5. If we are supposed to begin capturing we should update the time spent

capturing now, which is not entirely intuitive, but thanks to Epic there is a

function that will help us.

TimeCapturing += GetTimerRate('tCheckCapture', self);

6. With this new time value we can check against the configurable value for this

volume. If it is greater or equal we need to go ahead with the capture.

if (TimeCapturing >= iTimeToCapture)

{

}

a. If the capturing team is Blue, send out the blue capture event, and vice versa

for red.

UpdateEvents(CapturingTeamID == BLUE_TEAM ? CAP_BLU ECONT :

CAP_REDCONT);

b. Increment the scores for the capturing players. This is where we are using the

two variables defined earlier.

foreach CapturingMembers(P)

{

 ScorerPRI =

UTPlayerReplicationInfo(P.Controller.PlayerReplicat ionInfo);

 ScorerPRI.Score += (iPointReward);

 ScorerPRI.bForceNetUpdate = TRUE;

}

c. Update the Captured Team ID.

CapturedTeamID = CapturingTeamID;

d. And finally, clear out the Capturing team ID as well as the time capturing

counter, followed by clearing the timer. This is important to do so we don’t end

up recalling this function.

CapturingTeamID = NO_TEAM;

TimeCapturing = 0;

ClearTimer('tCheckCapture', self);

7. Save the script.

TUTORIAL 13.20 – THE CAPTURE VOLUME, PART
V: UPDATING THE EVENTS

When we want to trigger the sequence events it is necessary to loop through all

of the sequence events of our volume and send out the appropriate flag. This

function handles this, including the looping.

1. Open ConTEXT and the CaptureVolume.uc script.

2. Define the function and declare a couple variables for ease of use, and

iteration.

function UpdateEvents(int flag)

{

}

3. Declare a local Int variable to be used in a For loop and a

SeqEvent_VolumeCaptured object reference for use with an iterator.

local int i;

local SeqEvent_VolumeCaptured CaptureEvent;

4. Begin a loop, over all GeneratedEvents. This is an array that comes into play

when working within kismet, and other event sequences.

for (i = 0; i < GeneratedEvents.Length; i++)

{

}

5. Inside the loop, cast the generated event into a VolumeCaptured sequence

event and if the cast works send it the appropriate flag. This function,

Notify_VolumeCaptured, will lead to our use of an interface.

CaptureEvent = SeqEvent_VolumeCaptured(GeneratedEve nts[i]);

if (CaptureEvent != None)

{

 CaptureEvent.Notify_VolumeCaptured(flag);

}

6. Save the script.

TUTORIAL 13.21 – THE CAPTURE VOLUME, PART
VI: TOGGLING THE VOLUME OFF & UPDATING
OUR DEFAULTPROPERTIES BLOCK

We only have a single function left for this class, and that is the toggle function.

1. Open ConTEXT and the CaptureVolume.uc script.

2. OnToggle is called when attached to a toggle event. This works just as the

Lights and other actors do.

simulated function OnToggle(SeqAct_Toggle action)

{

}

3. It accepts a Sequence Action and checks the impulses for them. The indexes

are 0, 1 and 2, which are connected to On, Off and Toggle, respectively.

if (action.InputLinks[0].bHasImpulse)

 bEnabled = TRUE;

else if (action.InputLinks[1].bHasImpulse)

 bEnabled = FALSE;

else if (action.InputLinks[2].bHasImpulse)

 bEnabled = !bEnabled;

4. Then we force the network update

ForceNetRelevant();

5. Our default properties block needs to be updated now, to include the Capture

sequence Event that we are going to be implementing in just a moment.

defaultproperties

{

 // For UEd setup mainly.

 BrushColor = (B=128, G=255, R=128, A=255)

 bColored = True

 bStatic = false

 // Default values for the volume

 iMinimumPlayersForCapture = 1

 CapturedTeamID = NO_TEAM

 iTimeToCapture = 3

 iPointReward = 5

 // Attach our output events

 SupportedEvents(0)=Class'UTBook.SeqEvent_VolumeC aptured'

}

6. Save the script.

TUTORIAL 13.22 – THE CAPTURE VOLUME, PART
VII: THE SEQUENCE EVENT’S INTERFACE AND
IMPLEMENTATION

We have completed the Volume and need to write the code for the Captured

Volume Sequence Event. These can be a bit irritating, try not to let them get to

you too much. This one is simple enough, so lets get started.

1. Open ConTEXT and create a new file named ICaptureSequenceEvent.uc using

the UnrealScript highlighter.

2. The interface for our sequence event needs only to declare a single function.

Let’s do that.

interface ICaptureSequenceEvent;

function Notify_VolumeCaptured(int outputIndex);

3. Save the script.

4. Implementing the function is going to be following the same pipework that

was laid previously. Create a new file named SeqEvent_VolumeCaptured.uc

using the UnrealScript highlighter.

5. Define the class, extending SequenceEvent and implementing the interface we

just declared.

class SeqEvent_VolumeCaptured extends SequenceEvent

DependsOn(CaptureVolume) implements(ICaptureSequenc eEvent);

6. Define our function, Notify_VolumeCaptured().

function Notify_VolumeCaptured(int outputIndex)

{

}

7. Declare a local dynamic array of Ints and create a log statement to output the

value of the parameter sent to the function.

local array<int> ActivateIndices;

`log("Notify_VolumeCaptured has been executed" @

outputIndex,,'UTBook');

8. We only send a single trigger at a time, since there is only one to worry

about.

ActivateIndices[0] = outputIndex;

if (CheckActivate(Originator, None, false, Activate Indices))

{

 `log("Notify_VolumeCaptured has been activated", ,'UTBook');

}

9. Stepping into the default properties block, we have a few links to take into

account and connect where necessary.

defaultproperties

{

}

10. These Links are important, their index are the actual values being sent

around

OutputLinks(0) = (LinkDesc="Red Capture")

OutputLinks(1) = (LinkDesc="Blue Capture")

OutputLinks(2) = (LinkDesc="Unstable")

11. And now a couple tweaks to the kismet element, assigning its name,

category and max trigger count defaults.

ObjName = "Volume Captured"

ObjCategory = "Objective"

MaxTriggerCount = 0 // Default to being triggered i nfinite times.

12. Finally, we want to make sure the player does not trigger this event,

exclusively.

bPlayerOnly = False

13. Save the script.

TUTORIAL 13.23 – PLACING A CAPTUREVOLUME
AND SEEING IT IN ACTION

With that, we have completed the volume and its sequence event, so you have a

clear example of how to create either for your own mod. This tutorial illustrates

iterators quite well, showing how they work like a for each loop does in other

languages.

1. Once again we have to load up our Editor and compiled code package. Load

up the editor and create a new map.

2. Open up the Actor Classes browser.

3. Navigate to File > Open then navigate to your Scripts directory, where your

compiled .u file resides.

4. Once the package has loaded, the new volume should be seen, under Actor >

Brush > Volume, as seen in Figure 14. Select it and go over to your map. You

should now be able to right click and an “Add Compass Here” menu option

provided to you.

Figure 13.55 - Actor Class Browser with our CaptureVolume

5. Place one of the volumes in the middle of the map. We are going to be setting

up a kismet sequence in just a moment. In Figure 15 we can see the options that

we designated for the new volume, visible in the Capture subcategory.

Figure 13.56 - The new settings for our mapper

6. The next step is to open up kismet and see our new sequence event. With one

of the volume selected, open up the kismet editor and right click. In the context

menu should be an option to create new event for your selected capture volume,

and under that should be our sequence event – Volume Captured. The element

that is drawn for us will look like this:

Figure 13.57 - Kismet of our Volume

7. You can go ahead and create a sequence here, so that we can see this

element in action. Here is mine.

Figure 13.58 - The Kismet Demo, featuring a Custom Kismet Event

8. Now that you have that completed, we can save the map out and start it up.

We should see something like the following in your log file:

Log: Family Asset Package Loaded: CH_Corrupt_Arms_S F

Log: CONSTRUCTIONING: LoadFamilyAsset (LIAM) Took: -0.01 secs

ScriptLog: Finished creating custom characters in 1 .8737 seconds

Error: Can't start an online game that hasn't been created

ScriptLog: START MATCH

ScriptLog: Num Matches Played: 0

UTBook: Notify_VolumeCaptured has been activated

Log: Kismet: Red Capture

UTBook: Notify_VolumeCaptured has been activated

UTBook: Notify_VolumeCaptured has been activated

Log: Kismet: Blue Capture

UTBook: Notify_VolumeCaptured has been activated

Log: Kismet: Red Capture

Error: Can't end an online game that hasn't been cr eated

Log: Closing by request

Log: appRequestExit(0)

9. We can see here, the scoreboard is being updated with our volume being

captured during the game.

Figure 13.59 – The scoreboard shown 40 seconds in on the left and 95

seconds in on the right.

And with that we have completed this tutorial. Lets step back through it quickly

and highlight some of the important aspects.

• Interfaces can be created for any Class we are going to develop

• Volumes are not difficult to create, or configure to do our bidding

• Kismet is actually created through Sequence Events, and they have a very

simple interface

• Iterators save us a lot of time and energy, but can be very costly

depending on where you call them.

• Planning something out helps ease the process of developing and can

speed it up if approached correctly

INTERFACES WITHIN UT3

The listing that follows includes all non test related interfaces within Unreal

Tournament 3 that may be helpful. There are others, but they are either native

or relating to native processes within the game which are beyond the scope of

this book.

IQueryHandler

struct KeyValuePair

struct WebAdminQuery

function init(WebAdmin)

function cleanup()

function bool handleQuery(WebAdminQuery)

function bool unhandledQuery(WebAdminQuery)

function registerMenuItems(WebAdminMenu)

ISession

function string getId()

function reset()

function Object getObject(string)

function putObject(string, Object)

function removeObject(string)

function string getString(string, optional string)

function putString(string, string)

function removeString(string)

ISessionHandler

function ISession create()

function ISession get(string)

function bool destroy(ISession)

function destroyAll()

IWebAdminAuth

function init(WorldInfo)

function cleanup()

function IWebAdminUser authenticate(string, string, out string)

function bool logout(IWebAdminUser)

function bool validate(string, string, out string)

function bool validateUser(IWebAdminUser, out string)

IWebAdminUser

struct MessageEntry

function string getUsername()

function bool canPerform(string)

function PlayerController getPC()

function messageHistory(out array, optional int)

OnlineAccountInterface

function bool CreateOnlineAccount(string,string,string,optional string)

delegate OnCreateOnlineAccountCompleted(EOnlineAccountCreateStatus)

function AddCreateOnlineAccountCompletedDelegate(delegate)

function ClearCreateOnlineAccountCompletedDelegate(delegate)

function bool CreateLocalAccount(string,optional string)

function bool RenameLocalAccount(string,string,optional string)

function bool DeleteLocalAccount(string,optional string)

function bool GetLocalAccountNames(out array)

function bool IsKeyValid()

function bool SaveKey(string)

OnlineContentInterface

delegate OnContentChange()

function AddContentChangeDelegate(delegate, optional byte)

function ClearContentChangeDelegate(delegate, optional byte)

delegate OnReadContentComplete(bool)

function AddReadContentComplete(byte,delegate)

function ClearReadContentComplete(byte,delegate)

function bool ReadContentList(byte)

function EOnlineEnumerationReadState GetContentList(byte, out array)

function bool QueryAvailableDownloads(byte)

delegate OnQueryAvailableDownloadsComplete(bool)

function AddQueryAvailableDownloadsComplete(byte,delegate)

function ClearQueryAvailableDownloadsComplete(byte,delegate)

function GetAvailableDownloadCounts(byte,out int,out int)

OnlineGameInterface

function bool CreateOnlineGame(byte,OnlineGameSettings)

delegate OnCreateOnlineGameComplete(bool)

function AddCreateOnlineGameCompleteDelegate(delegate)

function ClearCreateOnlineGameCompleteDelegate(delegate)

function bool UpdateOnlineGame(OnlineGameSettings)

function OnlineGameSettings GetGameSettings()

function bool DestroyOnlineGame()

delegate OnDestroyOnlineGameComplete(bool)

function AddDestroyOnlineGameCompleteDelegate(delegate)

function ClearDestroyOnlineGameCompleteDelegate(delegate)

function bool FindOnlineGames(byte,OnlineGameSearch)

delegate OnFindOnlineGamesComplete(bool)

function AddFindOnlineGamesCompleteDelegate(delegate)

function ClearFindOnlineGamesCompleteDelegate(delegate)

function bool CancelFindOnlineGames()

delegate OnCancelFindOnlineGamesComplete(bool)

function AddCancelFindOnlineGamesCompleteDelegate(delegate)

function ClearCancelFindOnlineGamesCompleteDelegate(delegate)

function OnlineGameSearch GetGameSearch()

function bool FreeSearchResults(optional OnlineGameSearch)

function bool JoinOnlineGame(byte,const out OnlineGameSearchResult)

delegate OnJoinOnlineGameComplete(bool)

function AddJoinOnlineGameCompleteDelegate(delegate)

function ClearJoinOnlineGameCompleteDelegate(delegate)

function bool GetResolvedConnectString(out string)

function bool RegisterPlayer(UniqueNetId,bool)

delegate OnRegisterPlayerComplete(bool)

function AddRegisterPlayerCompleteDelegate(delegate)

function ClearRegisterPlayerCompleteDelegate(delegate)

function bool UnregisterPlayer(UniqueNetId)

delegate OnUnregisterPlayerComplete(bool)

function AddUnregisterPlayerCompleteDelegate(delegate)

function ClearUnregisterPlayerCompleteDelegate(delegate)

function bool StartOnlineGame()

delegate OnStartOnlineGameComplete(bool)

function AddStartOnlineGameCompleteDelegate(delegate)

function ClearStartOnlineGameCompleteDelegate(delegate)

function bool EndOnlineGame()

delegate OnEndOnlineGameComplete(bool)

function AddEndOnlineGameCompleteDelegate(delegate)

function ClearEndOnlineGameCompleteDelegate(delegate)

function EOnlineGameState GetOnlineGameState()

function bool RegisterForArbitration()

delegate OnArbitrationRegistrationComplete(bool)

function AddArbitrationRegistrationCompleteDelegate(delegate)

function ClearArbitrationRegistrationCompleteDelegate(delegate)

function array GetArbitratedPlayers()

function AddGameInviteAcceptedDelegate(byte,delegate)

function ClearGameInviteAcceptedDelegate(byte,delegate)

delegate OnGameInviteAccepted(OnlineGameSettings)

function bool AcceptGameInvite(byte)

function bool RecalculateSkillRating(const out array)

OnlineNewsInterface

function bool ReadGameNews(byte)

delegate OnReadGameNewsCompleted(bool)

function AddReadGameNewsCompletedDelegate(delegate)

function ClearReadGameNewsCompletedDelegate(delegate)

function string GetGameNews(byte)

function bool ReadContentAnnouncements(byte)

delegate OnReadContentAnnouncementsCompleted(bool)

function AddReadContentAnnouncementsCompletedDelegate(delegate)

function ClearReadContentAnnouncementsCompletedDelegate(delegate)

function string GetContentAnnouncements(byte)

OnlinePlayerInterface

delegate OnLoginChange()

delegate OnLoginCancelled()

delegate OnMutingChange()

delegate OnFriendsChange()

function bool ShowLoginUI(optional bool)

function bool Login(byte,string,string,optional bool)

function bool AutoLogin()

delegate OnLoginFailed(byte,EOnlineServerConnectionStatus)

function AddLoginFailedDelegate(byte,delegate)

function ClearLoginFailedDelegate(byte,delegate)

function bool Logout(byte)

delegate OnLogoutCompleted(bool)

function AddLogoutCompletedDelegate(byte,delegate)

function ClearLogoutCompletedDelegate(byte,delegate)

function ELoginStatus GetLoginStatus(byte)

function bool GetUniquePlayerId(byte,out UniqueNetId)

function string GetPlayerNickname(byte)

function EFeaturePrivilegeLevel CanPlayOnline(byte)

function EFeaturePrivilegeLevel CanCommunicate(byte)

function EFeaturePrivilegeLevel CanDownloadUserContent(byte)

function EFeaturePrivilegeLevel CanPurchaseContent(byte)

function EFeaturePrivilegeLevel CanViewPlayerProfiles(byte)

function EFeaturePrivilegeLevel CanShowPresenceInformation(byte)

function bool IsFriend(byte,UniqueNetId)

function bool AreAnyFriends(byte,out array)

function bool IsMuted(byte,UniqueNetId)

function bool ShowFriendsUI(byte)

function AddLoginChangeDelegate(delegate,optional byte)

function ClearLoginChangeDelegate(delegate,optional byte)

function AddLoginCancelledDelegate(delegate)

function ClearLoginCancelledDelegate(delegate)

function AddMutingChangeDelegate(delegate)

function ClearMutingChangeDelegate(delegate)

function AddFriendsChangeDelegate(byte,delegate)

function ClearFriendsChangeDelegate(byte,delegate)

function bool ReadProfileSettings(byte,OnlineProfileSettings)

delegate OnReadProfileSettingsComplete(bool)

function AddReadProfileSettingsCompleteDelegate(byte,delegate)

function ClearReadProfileSettingsCompleteDelegate(byte,delegate)

function OnlineProfileSettings GetProfileSettings(byte)

function bool WriteProfileSettings(byte,OnlineProfileSettings)

delegate OnWriteProfileSettingsComplete(bool)

function AddWriteProfileSettingsCompleteDelegate(byte,delegate)

function ClearWriteProfileSettingsCompleteDelegate(byte,delegate)

function bool ReadFriendsList(byte,optional int,optional int)

delegate OnReadFriendsComplete(bool)

function AddReadFriendsCompleteDelegate(byte,delegate)

function ClearReadFriendsCompleteDelegate(byte,delegate)

function EOnlineEnumerationReadState GetFriendsList(byte,out array,optional

int,optional int)

function SetOnlineStatus(byte,int,const out array,const out array)

function bool ShowKeyboardUI(byte,string,string,optional bool,optional

bool,optional string,optional int)

function AddKeyboardInputDoneDelegate(delegate)

function ClearKeyboardInputDoneDelegate(delegate)

function string GetKeyboardInputResults(out byte)

delegate OnKeyboardInputComplete(bool)

function bool AddFriend(byte,UniqueNetId,optional string)

function bool AddFriendByName(byte,string,optional string)

delegate OnAddFriendByNameComplete(bool)

function AddAddFriendByNameCompleteDelegate(byte,delegate)

function ClearAddFriendByNameCompleteDelegate(byte,delegate)

function bool AcceptFriendInvite(byte,UniqueNetId)

function bool DenyFriendInvite(byte,UniqueNetId)

function bool RemoveFriend(byte,UniqueNetId)

delegate OnFriendInviteReceived(byte,UniqueNetId,string,string)

function AddFriendInviteReceivedDelegate(byte,delegate)

function ClearFriendInviteReceivedDelegate(byte,delegate)

function bool SendMessageToFriend(byte,UniqueNetId,string)

function bool SendGameInviteToFriend(byte,UniqueNetId,optional string)

function bool SendGameInviteToFriends(byte,array,optional string)

delegate OnReceivedGameInvite(byte,string)

function AddReceivedGameInviteDelegate(byte,delegate)

function ClearReceivedGameInviteDelegate(byte,delegate)

function bool JoinFriendGame(byte,UniqueNetId)

delegate OnJoinFriendGameComplete(bool)

function AddJoinFriendGameCompleteDelegate(delegate)

function ClearJoinFriendGameCompleteDelegate(delegate)

function GetFriendMessages(byte,out array)

delegate OnFriendMessageReceived(byte,UniqueNetId,string,string)

function AddFriendMessageReceivedDelegate(byte,delegate)

function ClearFriendMessageReceivedDelegate(byte,delegate)

function bool DeleteMessage(byte,int)

OnlinePlayerInterfaceEx

function bool ShowFeedbackUI(byte,UniqueNetId)

function bool ShowGamerCardUI(byte,UniqueNetId)

function bool ShowMessagesUI(byte)

function bool ShowAchievementsUI(byte)

function bool ShowInviteUI(byte,optional string)

function bool ShowContentMarketplaceUI(byte)

function bool ShowMembershipMarketplaceUI(byte)

function bool ShowDeviceSelectionUI(byte,int,bool)

function AddDeviceSelectionDoneDelegate(byte,delegate)

function ClearDeviceSelectionDoneDelegate(byte,delegate)

function int GetDeviceSelectionResults(byte,out string)

delegate OnDeviceSelectionComplete(bool)

function bool IsDeviceValid(int)

function bool UnlockAchievement(byte,int)

function AddUnlockAchievementCompleteDelegate(byte,delegate)

function ClearUnlockAchievementCompleteDelegate(byte,delegate)

delegate OnUnlockAchievementComplete(bool)

function bool UnlockGamerPicture(byte,int)

delegate OnProfileDataChanged()

function AddProfileDataChangedDelegate(byte,delegate)

function ClearProfileDataChangedDelegate(byte,delegate)

function bool ShowFriendsInviteUI(byte,UniqueNetId)

function bool ShowPlayersUI(byte)

OnlineStatsInterface

function bool ReadOnlineStats(const out array,OnlineStatsRead)

function bool ReadOnlineStatsForFriends(byte,OnlineStatsRead)

function bool ReadOnlineStatsByRank(OnlineStatsRead,optional int,optional int)

function bool ReadOnlineStatsByRankAroundPlayer(byte,OnlineStatsRead,optional

int)

function AddReadOnlineStatsCompleteDelegate(delegate)

function ClearReadOnlineStatsCompleteDelegate(delegate)

delegate OnReadOnlineStatsComplete(bool)

function FreeStats(OnlineStatsRead)

function bool WriteOnlineStats(UniqueNetId,OnlineStatsWrite)

function bool FlushOnlineStats()

delegate OnFlushOnlineStatsComplete(bool)

function AddFlushOnlineStatsCompleteDelegate(delegate)

function ClearFlushOnlineStatsCompleteDelegate(delegate)

function bool WriteOnlinePlayerScores(const out array)

function string GetHostStatGuid()

function bool RegisterHostStatGuid(const out string)

delegate OnRegisterHostStatGuidComplete(bool)

function AddRegisterHostStatGuidCompleteDelegate(delegate)

function ClearRegisterHostStatGuidCompleteDelegateDelegate(delegate)

function string GetClientStatGuid()

function bool RegisterStatGuid(UniqueNetId,const out string)

OnlineSystemInterface

function bool HasLinkConnection();

delegate OnLinkStatusChange(bool)

function AddLinkStatusChangeDelegate(delegate)

function ClearLinkStatusChangeDelegate(delegate)

delegate OnExternalUIChange(bool)

function AddExternalUIChangeDelegate(delegate)

function ClearExternalUIChangeDelegate(delegate)

function ENetworkNotificationPosition GetNetworkNotificationPosition()

function SetNetworkNotificationPosition(ENetworkNotificationPosition)

delegate OnControllerChange(int,bool)

function AddControllerChangeDelegate(delegate)

function ClearControllerChangeDelegate(delegate)

function bool IsControllerConnected(int)

delegate OnConnectionStatusChange(EOnlineServerConnectionStatus)

function AddConnectionStatusChangeDelegate(delegate)

function ClearConnectionStatusChangeDelegate(delegate)

function ENATType GetNATType()

delegate OnStorageDeviceChange()

function AddStorageDeviceChangeDelegate(delegate)

function ClearStorageDeviceChangeDelegate(delegate)

OnlineVoiceInterface

function bool RegisterLocalTalker(byte)

function bool UnregisterLocalTalker(byte)

function bool RegisterRemoteTalker(UniqueNetId)

function bool UnregisterRemoteTalker(UniqueNetId)

function bool IsLocalPlayerTalking(byte)

function bool IsRemotePlayerTalking(UniqueNetId)

function bool IsHeadsetPresent(byte)

function bool SetRemoteTalkerPriority(byte,UniqueNetId,int)

function bool MuteRemoteTalker(byte,UniqueNetId)

function bool UnmuteRemoteTalker(byte,UniqueNetId)

delegate OnPlayerTalking(UniqueNetId)

function AddPlayerTalkingDelegate(delegate)

function ClearPlayerTalkingDelegate(delegate)

function StartNetworkedVoice(byte)

function StopNetworkedVoice(byte)

function bool StartSpeechRecognition(byte)

function bool StopSpeechRecognition(byte)

function bool GetRecognitionResults(byte,out array)

delegate OnRecognitionComplete()

function AddRecognitionCompleteDelegate(byte,delegate)

function ClearRecognitionCompleteDelegate(byte,delegate)

function bool SelectVocabulary(byte,int)

function bool SetSpeechRecognitionObject(byte,SpeechRecognition)

function bool MuteAll(byte,bool)

function bool UnmuteAll(byte)

UIDataStoreSubscriber

native function SetDataStoreBinding(string, optional int)

native function string GetDataStoreBinding(optional int) const

native function bool RefreshSubscriberValue(optional int)

native function NotifyDataStoreValueUpdated(UIDataStore, bool, name,

UIDataProvider, int)

native function GetBoundDataStores(out array)

native function ClearBoundDataStores()

UIDataStorePublisher extends UIDataStoreSubscriber

native function bool SaveSubscriberValue(out array, optional int)

UIEventContainer

native final function GetUIEvents(out array, optional class)

native final function bool AddSequenceObject(SequenceObject, optional bool)

native final function RemoveSequenceObject(SequenceObject)

native final function RemoveSequenceObjects(array)

UIListElementCellProvider

const UnknownCellDataFieldName = 'NAME_None';

UIStringRenderer

native final virtual function SetTextAlignment(EUIAlignment, EUIAlignment)

UIStyleResolver

native function name GetStyleResolverTag()

native function bool SetStyleResolverTag(name)

native function bool NotifyResolveStyle(UISkin, bool, optional UIState, const

optional name)

SUMMARY

We have now taken another step out of the shadows and learned about

interfaces, within UnrealScript. We have seen how they are defined, their

purpose and their quirks within this environment and within the two tutorials we

worked on two tutorial sets to implement them. Although they are really a very

simple concept they can and should play an important role in your development

project.

Interfaces allow us to rely upon the compiler to control our implementation

between classes. They are a template through which we can depend upon a

certain group of functions being provided, while their implementation may

change. Interfaces may contain functions, delegates, constants or structures, in

definition form, and nothing more.

