Chapter 13

Interfaces

Chapter 13 - Interfaces

o

o

O O O o o o

What are interfaces?
Examples of Interfaces

= USB

= COMPUTER MICE

= POWER OUTLETS
PROGRAMMING SPECIFICS
DEFINING INTERFACES

= DECLARATION V. DEFINITION
INTERFACE INHERITANCE
IMPLEMENTING INTERFACES
WHY ARE INTERFACES USED?
FINAL WORDS
TUTORIAL 13.1 - THE COMPASS, PART I: ICOMPASS INTERFACE
TUTORIAL 13.2 - THE COMPASS, PART II: COMPASS CLASS
IMPEMENTATION
TUTORIAL 13.3 - THE COMPASS, PART III: TESTING THE COMPASS,
PART I
TUTORIAL 13.4 - THE MINIMAP, PART I: THE MU_MINIMAP CLASS
TUTORIAL 13.5 - THE MINIMAP, PART II: THE MINIMAPGAME CLASS
TUTORIAL 13.6 - THE MINIMAP, PART III: MINIMAPHUD INITIAL
SETUP
TUTORIAL 13.7 - THE MINIMAP, PART IV: MINIMAPHUD FUNCTIONS
TUTORIAL 13.8 - THE MINIMAP, PART V: DRAWMAP() INITIAL SETUP
TUTORIAL 13.9 - THE MINIMAP, PART VI: PLAYERPOS AND
CLAMPEDPLAYERPOS
TUTORIAL 13.10 - THE MINIMAP, PART VII: MAP ROTATION
TUTORIAL 13.11 - THE MINIMAP, PART VII: SET MATERIAL PARAMS
AND DRAW MAP
TUTORIAL 13.12 - THE MINIMAP, PART VIII: DRAWING OTHER
PLAYERS
TUTORIAL 13.13 - THE MINIMAP, PART IX: MAP SETUP AND
SCREENSHOT
TUTORIAL 13.14 - THE MINIMAP, PART X: MINIMAP MATERIAL AND
FINISHING TOUCHES
TUTORIAL 13.15 - THE MINIMAP, PART XI: TESTING THE MINIMAP
TUTORIAL 13.16 - THE CAPTURE VOLUME, PART I: INITIAL SETUP
TUTORIAL 13.17 - THE CAPTURE VOLUME, PART II: TOUCH AND
TIME

o TUTORIAL 13.18 - THE CAPTURE VOLUME, PART III: THE CAPTURED
STATE

o TUTORIAL 13.19 - THE CAPTURE VOLUME, PART IV: THE TIMER
FUNCTION

o TUTORIAL 13.20 - THE CAPTURE VOLUME, PART V: UPDATING THE
EVENTS

o TUTORIAL 13.21 - THE CAPTURE VOLUME, PART VI: TOGGLING THE
VOLUME OFF & UPDATING OUR DEFAULTPROPERTIES BLOCK

o TUTORIAL 13.22 - THE CAPTURE VOLUME, PART VII: THE
SEQUENCE EVENT'S INTERFACE AND IMPLEMENTATION

o TUTORIAL 13.23 - PLACING A CAPTUREVOLUME AND SEEING IT IN
ACTION

o INTERFACES WITHIN UT3

o SUMMARY

We now have more than enough to accomplish most any task in Unreal Script.
We understand the syntax, how to instantiate variables and functions. We have
covered a few advanced topics, allowing us to take advantage of iterators, states
and now delegates. In this chapter we are going to go a step further, opening
the door to dependable programming as your project grows by introducing
Interfaces. We will see their purpose, instantiation and a couple examples of how
they can be used to help maintain coding standards throughout a project.

What are interfaces?

Programming poses many challenges that are not entirely obvious to the lay
observer. Game development, in particular, poses many such challenges and as
such, it is a field that takes advantage of most every aspect of software
engineering. Occasionally when working in large object oriented systems you will
create a number of classes that are all used in a single way, defining a group of
functions that provide the same function signature.

class MyPistol extends MyWeapon;

function bool PrimaryFire(float rate)

{
/* Pistol Stuff Here */

}

/* and so forth */
class MyRifle extends MyWeapon;

function bool PrimaryFire(float rate)

{
/* Rifle Stuff Here */

}

/* and so forth */
class MyShotgun extends MyWeapon;

function bool PrimaryFire(float rate)

{
[* Shotgun Stuff Here */

}
/* and so forth */

It is entirely possible — similar to how it is possible to swim across the English
Channel or build a house entirely from toothpicks — to throw ourselves to the
wind and just write the code here, but it doesn’t ensure that we implement the
necessary functions properly. Nor does it provide any assurance that our

functions will not change over time, so refactoring our code later may be a
hassle; this is of course not to mention that it doesn’t provide a means for us to
ensure that our buddies and co-developers actually follow directions.

Many object oriented languages provide a tool that will help mitigate this issue,
and Unreal Script stays true to its Java and CPP roots. Interfaces are used in
these types of situations, partially handing the complications of monitoring code
development over to the compiler, while helping us increase the quality of our
code by providing an explicit means of planning our classes according to a
defined standard.

A term that will be useful in this discussion is Implement. Throughout the rest of
this chapter I will use it to refer to a class or device providing some group of
functionality to the user. A spoon implements the utensil interface, which is
synonymous to saying that a spoon provides all of the functionality of a utensil.
A spoon may implement the utensil, but that is not to say that it is not
specialized in its own way, providing further functionality.

Examples of Interfaces

If you were to take a trip to your local Ikea or cutlery shop you will find
extravagant views of what a fork, spoon or knife should be, and chances are they
will look different than the ones here. Regardless of this possibility though, they
implement the same standards as all other cutlery, when looked at on the whole.
Some may even be specialized further, such as a straining spoon which is useful
for vegetables, or a spork which combines the usefulness of both elements into a
stubby red headed step child, also known as the “best of both worlds.”

To manipulate

T lit food int
food, that is simple © Spit Tood Into

_ To move liquids pieces small
Provide for easy)
_ and jello from one enough to be
removal of items . .
location to another placed in my
that have been
mouth.

picked up

Table 13.1 Simple example of Interfaces using Utensils

Being a utensil may place other standards or requirements on our Fork, Spoon
and Knife, such as ensuring:

- They are large enough to be useful, but small enough to fit in our mouths
and hands

- They aren’t made out of perishable or non standard materials (no one ever
heard of Styrofoam utensils)

- They are the correct length, to make sure we don’t end up biting our
fingers or poking our girlfriends eyes out as we eat

- They are not bent in an unacceptably complicated manner, forcing us to
contort our bodies to be able to eat

USB

Another example of an interface is something that we each use on a regular
basis, and is more than likely on each of our computers. When we plug in a USB
device we are taking advantage of a well defined interface, allowing us to use
one port to plug in everything from a Wacom tablet, to a mouse, to a hard drive.
We can reliably jam our USB dongle into our computer and within a few seconds
windows will recognize — or not in some cases - our device and allow us to use it
straight away. USB has not been around forever, many of the people I know
remember how stressful it was to get our joysticks to work on the Commodore
64, and it had a standardized interface as well, called a serial port.

Figure 13.1 - A common USB Port

COMPUTER MICE

Interfaces are all around us, allowing us to pick up a mouse and depend upon its
left and right buttons working, or how it moves meeting our expectations. Mice
are a great example of interfaces because they expose a second characteristic of
interfaces - implementation may change. The mouse may be ball, trackball, light
or laser, but regardless of the implementation we can dependably use this mouse
as we have learned over the years. Moving it along our mouse pad, or spinning
the trackball, sends the proper commands to our computer to move the cursor
around the screen; clicking the buttons also provides the expected response
from your computer.

POWER OUTLETS

Two and three pronged power outlets provide an interface between electric
devices, like your refrigerator or ceiling fan and the power grid provided by the
city. We have multiple interfaces to deal with here, though. Three pronged
interfaces allow us to take advantage of grounding, while two pronged outlets
don't.

Our device, like a laptop or desktop computer, can only be plugged into a three
pronged outlet, because of power requirements and surge protection. A two
pronged item, like a desk fan or Cell phone adapter uses only two, but it may be
plugged into either outlet because the three pronged outlet provides all of the
same functionality as the two pronged outlet, it simply goes a step further,
providing the ground as well.

The three pronged outlet is said to Implement the two pronged interface. If we
were to set up an inheritance tree for some popular outlet types it could look
something like this, although this is admittedly simplified to exclude the high
voltage lines that you may find your refrigerator or deep freezer plugged into.

Figure 13.2 - Power Outlet Tree Diagram

We can use these diagrams of this type to help orient our notes and keep a fifty-
thousand foot view of our classes and how they relate. They are also fun to keep
track of what we can use at which level. Looking at this diagram and knowing
that I have a heavy duty hair dryer to use I can look in my bathroom and find
anything that implements the three pronged outlet, while my desktop fan can be
plugged into anywhere in my house.

PROGRAMMING SPECIFICS

When it comes to programming we use interfaces to define certain functions that
can be depended upon by other classes. When programming, you will
occasionally find yourself defining a number of functions that have the same
input output and name. We call this combination a function’s signature. Working
within these confines you can draft some sort of requirement and hand it to your
programmers telling them what kind of functionality to provide, but Interfaces
allow you to force the compiler to confirm that you have provided them.

One way to look at this is to think of an example group of objects as follows:

Figure 13.3 Interface Overview

This hierarchy allows us to see a plan for our weapons, and we have created two
interfaces, the IWeapon and the IZoomedWeapon interfaces, although the details
of their contents don’t really matter at this point. We can see here that the
Pistol, MachineGun and RocketLauncher implement the IWeapon Interface, while
the SniperRifle implements the IZoomedWeapon Interface. When working with
interfaces it is a standard practice to have interfaces use the “I” prefix to set
them apart.

It may be useful to look at the interfaces, like IWeapon and IZoomedWeapon, as
enforcers, or explicit laws. The compiler uses interfaces as a requirements
document for your code. Each interface defines necessary functions and when
you implement it the compiler does the checking to ensure that you have

implemented them. Looking into IWeapon we could see something like the
following, in pseudo-code:

All weapons will implement a Primary Fire, accepting the rate that it fires, and
Secondary Fire method which accepts the number of the rounds it should fire.
Both will return false if the execution was successful.

To ensure data integrity we will define two constants that will be free to be used
throughout the implementations. The Maximum Firing Rate and the Minimum
firing Counter.

When you attempt to compile the above classes the compiler will check the
pistol, machinegun, and any other class implementing the IWeapon interface, to
see that they are implementing the necessary functions. Depending on the
language, not implementing a function defined in an interface will more than
likely result in an error, or some scary looking output at compile time.

DEFINING INTERFACES

Unreal uses the Interface keyword to denote an interface, which is different from
a class, as we discussed earlier, because of the function signature. In Unreal
Script we are free to define any humber of functions, or data types as we see fit.
This includes functions, structures, enumerations, or anything further that does
not actually instantiate memory. You can use this fact to centralize these
declarations and minimize the code duplication problems that you may run into.

In Unreal Script, Interfaces are defined in a simple fashion, following the
standard set by the classes. Below is the IWeapon interface that we just went
through, declared in Unreal Script, instead of pseudo-code.

Interface IWeapon;

/* Define our constants */
const MaximumFiringRate = 0.05; // 60/1200
const MinimumFiringCounter = 3;

/* All following function declarations */
function bool PrimaryFire(float Rate);
function bool SecondaryFire(int Counter);

DECLARATION V. DEFINITION

Everything from the return type to the input value must match these function
signatures for it to be compiled by Unreal 3. This highlights another important
aspect of programming in this environment, the differentiation between
Declaration and Definition.

The interface declares functions, supplying the necessary elements like
return type and input arguments.

When you implement the interface in a class you will be able to define the
actual details of the function, like how it works or what it does.

It may be helpful to think about this in terms of a restaurant outing. You are
given the menu initially, an interface, but once you choose from that you will be
given the meat and potatoes of your meal. The interface is the menu, the food
itself is the implementation.

INTERFACE INHERITANCE

Similar to our discussion about power adapters, you can build interfaces off of
each other. This is accomplished in the same way as classes are extended, using
the Extends keyword.

Interface 1ZoomedWeapon extends IWeapon;

function bool ZoomedFire(float Rate, int FOV);

It is certainly the case that we can build complicated hierarchical inheritance
trees for interfaces, but you should do what you can to stay away from them.
Just as with your classes you should create interfaces only when needed, and
define them explicitly. Defining interfaces to be nebulous or include frivolous
declarations will lead to complicated classes with empty functions. Using
interfaces is exceptionally beneficial when you plan ahead. I would strongly
recommend a class in object oriented analysis and design or a book on UML if
you are turned on by this type of discussion.

IMPLEMENTING INTERFACES

Implementing an Interface in a class is really quite straight forward in Unreal
Script, similar in fashion to what we are used to with the class derivation.

Interfaces will more than likely be stand alone, however. Let’s look at two
examples to drive this home. The pistol class implements the IWeapon interface,
and its class will look something like the following in UScript:

Class Pistol extends UTWeapon implements(IWeapon);

function bool PrimaryFire(float Rate)
{
if (Rate > class'IWeapon'.const.MaximumFiringRat e)
return true;

/* Do mumbo jumbo here */
return false;

function bool SecondaryFire(int Counter)
{
if (Counter < class'lWeapon'.const.MinimumFiring Counter)
return true;

/* Do jumbo mumbo here */
return false;

}

As you can see this implements the necessary functions, declared in the
interface, and when you compile it you will get no errors. You will certainly see a
peculiar line...

if (Rate > class'lWeapon'.const.MaximumFiringRate)

This line is an example of how you gain access to a constant within an interface.
As a rule, treat interfaces as though they are classes and you can gain access to
their defined elements in the same fashion. (This is discussed in the third
chapter)

Just for examples sake, if you were to compile with the interface implemented
incorrectly you will see an error like the following:

Error, Implementation of function ‘SecondaryFire' ¢ onflicts with
interface 'IWeapon' - parameter 0 'Counter’
Compile aborted due to errors.

Let’s look at our sniper rifle.

Class SniperRifle extends UTWeapon implements(IZoom

function bool PrimaryFire(float Rate)

{

if (Rate > class'IWeapon'.const.MaximumFiringRat
Rate = class'IWeapon'.const.MaximumFiringRate

/* Do mumbo jumbo here */
return false;

function bool SecondaryFire(int Counter)

{

if (Counter < class'lWeapon'.const.MinimumFiring
Counter = class'lWeapon'.const.MinimumFiringC

/* Do jumbo mumbo here */
return false;

function bool ZoomedFire(float Rate, int FOV)

{

/* boom headshot! */
return false;

}

As you can see here this class implements IZoomedWeapon, which in turn
extends the IWeapon interface. The compiler expects both interfaces to be
implemented, and as a rule it will check every interface above the current one to
ensure that all of their functions are defined as well. This is another reason to
keep the interface tree short - think bush or shrub.

edWeapon);

Counter)
ounter,

Also note that neither of our classes has had to define the constants.

When you first begin working with interfaces you will undoubtedly have a tough
time and may wind up being overwhelmed. It may be useful to create Interface

index cards to keep track of your interfaces.

Functions
Constants
- PrimaryFire(rate)
o Returns Success + MaximumpFiringRate
« SecondaryFire(spread) « MinimumFiringSpread

o Returns Success

Table 13.2 - IWeapon Interface

|
IZoomedWeapon extends IWeapon

Functions

Constants

- ZoomedFire(Rate, FOV)

- None
- Returns Success

Table 13.3 - IZoomedWeapon Interface

Let’s review what interfaces are and highlight a couple quirks within the UT3
paradigm, then we will get into more code and see about building something out
that will actually be interesting.

- Interfaces allow us to declare functions that must be implemented within
our classes
- They provide us with a means to impose requirements upon our functions
declarations
- They make no requirement on the implementation other than the function
signature, also known as declaration
o Instead their focus is on how the functions will be used
o Implementation may vary from between classes; definition may be
different
o If a function is implemented in a parent class it will satisfy the
interfaces requirements
- UT3 provides us a means to define Enumerations, Structures, and
Constants, but nothing that actually requires memory

- Implementing multiple interfaces is possible, but should be used only in
select circumstances
o Implementing two interfaces of the same hierarchy will cause issues
within your code and should be avoided like the plague

WHY ARE INTERFACES USED?

As we have already discussed, interfaces provide a mechanic to the compiler to
ensure our classes conform to some specifications. Epic distributes quite a few
interfaces, including but not limited to the UI elements, many of the elements for
online gameplay, and some data-store craziness. If you look closely you will find
each interface is implemented as we have seen already in our examples, and a
second method, similar to what we experienced in the classes, as variable types.
A prime example of this is in the OnlineSubsystem:

[** The interface to use for creating and/or enumer ating account
information */
var OnlineAccountinterface Accountinterface;

[** The interface for accessing online player metho ds */
var OnlinePlayerinterface Playerinterface;

[** The interface for accessing online player exten sion methods */
var OnlinePlayerinterfaceEx PlayerinterfaceEx;

[** The interface for accessing system wide network functions */
var OnlineSysteminterface Systeminterface;

[** The interface to use for creating, searching fo r, or destroying
online games */
var OnlineGamelnterface Gamelnterface;

/** The interface to use for online content */
var OnlineContentInterface Contentinterface;

/** The interface to use for voice communication */
var OnlineVoicelnterface Voicelnterface;

/** The interface to use for stats read/write opera tions */
var OnlineStatsinterface StatsInterface;

[** The interface to use for reading game specific news
announcements */
var OnlineNewslInterface Newslnterface;

This reinforces what we have already learned about interfaces, but it may not be
entirely obvious. Lets take a look back at our weapons that we defined earlier.
We had defined our interface and said that they were there so they could be
used by other classes dependably. Our user could have a function as we have
here:

Function bool foo (IWeapon w)
{
w.PrimaryFire(60/1200);
[* any other things it wants to do */

}

In similar fashion to what we experienced earlier declaring variable types in our
classes, function parameters and structures. The upside, or downside depending
on how you look at it, is that you have a variable that is already cast to that type
when you are about to use it. This is used throughout the default codebase and
as such it is quite common place for reference material.

« Any class
implementing this

« Only items of this - This class or any _
. e interface
type inheriting it Ex
. Ex. Bool . Ex. UTPawn N
OnlineAccountlInte
rface

Table 13.4 - Interfaces are accepted when used as a type

FINAL WORDS

When to subclass and when to create in interface is a question many people like
to ask, and it’s not a bad question. When you get yourself going you will find that
interfacing creates similar results to sub classing, with one difference - sub

classing doesn’t stop you from changing the signature of a function, which is one
prime example of when to use an interface. Some projects require a defined
interface before a class is defined, as we discussed previously.

Throwing ourselves to the wind is a way of saying let chance control our destiny.
A simple typo may lead to hours of debugging, while an interface will give you a
direct line of where your function is not declared correctly.

TUTORIAL 13.1 — THE COMPASS, PART I:
ICOMPASS INTERFACE

We should now take a few minutes and implement an interface of some sort, just
to drive home our discussion up to this point. Let’s aim a little low for this first
one, focusing on the details, and later we will do something more interesting.

Our mapper and HUD coder have come to us, looking for a new element to be
defined, a compass. The purpose of this element is to be placed into our level
and provide the mappers fine tuned control over the direction of north, from that
the HUD coder has some needs, with which we are going to be defining our
Interface and later the actual Compass class.

The Compass needs:

to be placed within the map « Provide Getter functions for the

have rotatable heading, referred Yaw

to as the Yaw « Needs to calculate for radian

Have a visible icon within the and degree, in case of Ul

map changes

o It has been provided by - Allow the developers to grab the

the mapper, and is in the Rotator directly if they choose
CompassContent package « Ensure it is not removed or
named compass changed when the map reloads

Table 13.5 - Overview of specifications for our compass object

Most of this information is implementation related, but the coder clearly
understands our needs. We should take this step by step, so the code makes
clear sense.

1. Declare the ICompass Interface.
interface ICompass;

2. Declare the GetRadianHeading() function, returning the unwound heading of
the object.

function float GetRadianHeading();

3. Declare the GetDegreeHeading() Function, returning the converted radian
value into degrees.

function float GetDegreeHeading();

4. Declare the GetYaw() function, returning the Yaw of our objects Rotation.
function int GetYaw();

5. Declare the GetRotator function, returning the entire rotator object.
function Rotator GetRotator();

6. Declare the GetVectorizedRotator() function, returning the rotator, converted
to a vector.

function vector GetVectorizedRotator();

TUTORIAL 13.2 — THE COMPASS, PART II:
COMPASS CLASS IMPEMENTATION

We can take this interface and build out a compass in a straightforward fashion,
but we should do some research to make sure we do not end up reinventing the
wheel. The only element that may be useful to avoid writing on our own is
probably the rotator, which is seemingly in every element. It also provides the
interface that our mapper is accustomed to, with the rotation tool.

The Object class has a lot of cool functions and elements, which will most likely
be useful, but the actor class actually implements the rotator that we are looking
for, and it comes with the location vector as well, so life is great!

var(Movement) const vector Location; // Actor's | ocation; use Move
to set.
var(Movement) const rotator Rotation; // Rotation.

We can start coding out our class at this point, knowing that we intend to
implement the interface and derive from this class.

1. Define our class, extending the actor class and placeable, implementing our
ICompass interface.

class Compass extends actor placeable implements(IC ompass);

2. Define the Rotator retrieval functions. Because of where we chose to derive,
the rotator is already available to us. We can quickly take care of three of the
function definitions.

/l Return the yaw of the actor
function int GetYaw()

{

return Rotation.Yaw;

}

function Rotator GetRotator()

{

return Rotation;

}

function vector GetVectorizedRotator()

{

return vector(Rotation);

}

We only care about the Yaw and then providing raw access to our developers.

3. The Yaw is actually not exactly in the format that we need for the HUD to be
useful, but it works fine for our mapper. We will need to do some manipulation of
the rotator, ensuring the heading is accurate for the UI work. Let us take a
couple minutes to break this apart. First declare the GetRadianHeading()
function.

function float GetRadianHeading()

{

}

a. Three local variables are needed.
local Vector v;

local Rotator r;

local float f;

b. Get the Yaw component. Note that we are copying it into a new rotator
object’s yaw value. This is the first step in simplifying our rotator.

r.Yaw = GetYaw();

c. Convert our rotator to a Vector, which make the angle manipulations easier to
handle.

v = vector(r);

d. Unwind the Heading using a function that epic has provided to us. Many
functions like it will prove to be very useful if you get deep into the mathematical
end of programming within Unreal.

f = GetHeadingAngle(v);

e. Unwind that heading, using another of the built in functions. This actually
returns a radian value, but it may be negative.

f = UnwindHeading(f);

f. Lets convert the value to positive by adding 2Pi

while (f < 0)
f+= Pl * 2.0f;

g. And finally, return that value.
return f;

This is an algorithm that is used with the vehicles, save the radian conversion,
and can be seen within UTVehicle.uc on line 1199.

4. Convert the Radian measurement to degrees. We can now use the radian
measurement that we just calculated to be able to get the radian measurements.
There is a constant variable that is quite useful RadToDeg which is 180/PI, pre-
calculated for us.

function float GetDegreeHeading()

{

local float f;
f = GetRadianHeading();
f *= RadToDeg;

return f;

}

5. We are now done with the heavy lifting. The only things left to do are UI
related. Before we leave, though, it would be helpful to be able to have some
debug info output when we are working on our map later. A function that is very
useful for debugging as the level is loading is PostBeginPlay. We can output the
heading to our log file when the game begins.

event PostBeginPlay()

{
log("===================================",,'UTB ook");
‘log("Compass
Heading"@GetRadianHeading()@GetDegreeHeading(),,'UT Book?";
log("===================================",,'UTB ook");

6. We have the functions all setup, but we now need to hook up a couple visual
items for our mapper. Specifically an icon and the arrow need to be drawn on our
object. We can also take this moment to change a couple entries to ensure our
element holds its proper values and doesn’t get removed or changed when the
map is reset.

DefaultProperties

{
}

a. Define a new ArrowComponent element, named arrow. This will be the actual
arrow our mappers will be shown to reflect the actual direction that the object is
pointing.

Begin Object Class=ArrowComponent Name=Arrow

b. The Arrow Color is the 0-255 range, which you may be familiar with, from
your experience with Photoshop or Web development. You can tweak this as you
wish. There is a color chooser within UnrealEditor that is very nicely done, but
you can also play with the integer values.

ArrowColor = (B=80,G=80,R=200,A=255)

c. This is the scale of the Arrow, not the weight. You will see its length or size
increase as you scale this value up.

ArrowSize = 1.000000
d. Provide it with a nice and friendly name to help minimize complications.
Name = "North Heading"

e. Now close it out, and add it to the components array. You will see this pattern
throughout the map components in Unreal Script. End Object

Components(0) = Arrow

f. For instance, the Sprite component. This one is going to be slightly easier to
implement, but it requires that we know the package, group and/or name of the
texture we want to display. Begin as we did previously, defining the new
component object for our Sprite.

Begin Object Class=SpriteComponent Name=Sprite

g. We are going to plug in the new texture we want to have hooked to our
element. As with all 2d sprites in the editor, it will always face the developer and
should be as minimally intrusive as possible. As discussed earlier, our Sprite has
been defined for us already - ‘UTBookTextures.compass’.

Sprite=Texture2D' CompassContent.compass'

h. Now we will take a moment to set a couple boolean values, making it hidden
in game and avoid loading it into the actual game when playing.

HiddenGame = True
AlwaysLoadOnClient = False
AlwaysLoadOnServer = False

i. And finally close it out and add it to the Components array. This element you
pass in is the Name=Sprite entry.

End Obiject
Components(1) = Sprite

7. There are still a couple final elements that should be toggled for good
housekeeping, lets cover those before we complete this task.

a. bStatic is a Boolean that controls whether the Mappers have the ability to
change anything about this actor during game play. The compass should stick to
pointing north, so it should be static.

bStatic = True

b. bHidden controls the visibility of the primitive components of this actor. You
can think of this as a failsafe to the boolean values we changed on the Sprite
component.

bHidden = True

c. bNoDelete controls the ability for this actor to be deleted during gameplay. It
would be quite confusing for the compass to wink out of existence, so we clearly
want this property set to True.

bNoDelete = True

d. bMovable is tied into the movement of the actor. Another failsafe within the
actor class.

bMovable = False

You can find more information on the components by looking at the dozens of
derivative classes under Component. Suffice to say that these two are to hook up
a sprite and an arrow component on our object, based at its origin.

TUTORIAL 13.3 — THE COMPASS, PART III:
TESTING THE COMPASS, PART I

All of the coding is now behind us, at least for the compass element. We should
now build the code and open up the editor to check that we did everything
properly, place it into a map and then load it up into UT3 to test that the element
is working.

1. Go ahead and load up the editor. You should create a new (or open up an
existing if you are so inclined) map and set it up to have the necessary elements.

2. Open up the Actor Classes browser. This is within the Generic Browser, under
Actor Classes and contains the class hierarchy within Unreal Script.

3. The script package should already be loaded since it is in the ModPackages list
in the UTEditor.ini file, but if it is not for some reason, go to File > Open then
navigate to your Unpublished\CookedPC\Scripts directory, where your compiled
.u file resides.

-

Open Package

Look in: | =3 Script |;| o T 0

-1 :é-é]??l'ﬂmtﬂﬂnglmmalﬁu'ipt,u

| ;3
My Recent
Diocuments

Desktop

7

My Documents

=l

. -I
1
My Computer

‘_,_!] File pame: | MasteringUnrealScript.u .v Upen
B I - - Z_Z.' 2
My Metwork Files of type: | All Files [| Cancel

1

Figure 13.4 - File Dialog Looking for MasteringUnrealScript.u

4. Once it has loaded it should show the compass element in the class tree,
under Actor, as seen in Figure 13.5. Select it and go over to your map. You
should now be able to right click and an "Add Compass Here” menu option
provided to you.

| Acor Glsees | Groups [1evel | mefl12]
Use 'Actor' As Parent?
Flaceable Classes Only?

= A._Ctﬂr
& Brush

oo m

UTBook, Compass

A_Ambient_Loops
A _Ambient_MonLoops =]
A _Announcer_Reward

A_Announcer_Reward_Cue

Figure 13.5 - Actor Class Browser with our Compass

5. Selecting this element will create an element like the one in Figure 13.6. You
can make sure it works properly by selecting it in the editor and switching to the
rotation tool and see the arrow rotate.

Figure 13.6 - Our Compass Object in a map

6. If you load up your level now you should see something like the following in
your log file, showing that it is indeed working.

LIzl

Dockng
Ganesic | Actor Clasess | Geoups | Level | Referanced Assets | Primtive Stats | Dymismic Shadow Stats | Scens Mansgsr | Log |

M coimact parnt found for UlStateSequence 7 Try evilening DB AEFS chans=UlStatnSaquance name=Ul_nGameHud Marus MidGametan MidGameSafeRwginn TabContral UTsbBultan_7 ViateTab, Ul Statn_L=]
Log

o comact parent found for UiStsteSequence & Try anlering ‘OB REFS
Loz

Plo comoct parant found for Lusumwmm g u-.r amtering 0B REFS class=U|StateSequence namo=Ll_inGameHud Morus Mid GameMenu MidGameSafeRegion TabGartral UTabButton_7 ViateTab UlState |
Lag' Finished kookmng for orphan Actors 0.011 5

(Crui: MAP CHECKOEP nnmazmusﬁu‘;ss

Crmd: ACTOR ADD CLASS=Compass

Log. Attwrngting to add actor of class Campass' ta bevel o1 .72 00,1136 00, 248 00

(Cru: MODE WIDGETMODECYCLE

IIStateSequance mamo=Li_InGamnHud Morus: Wid G ameMaonu MidGameS sfefegion TabCordrol UTabButtan_7 VoteTab. UiState_|

Log' Built Phys Statichesh Cache: 254,007 ms

Log COOKEDPHYSICS: O TriMeshes (0.000000 KE), 21 Corw Hulls (54 063477 KE) - Tolal 54 063477 KB

Log Ulgwet BuildSirnamingData took 0017 sucands

Loz COOKEDOHYSICS: BSP 383 KB

Log Save=333 943427

Log Mong © \Program Fileshnneal Toumamirs 3@inariesl \WTGame\butosamesiSave trp' 10 T Program FilesiUnral Teamamerd S@inanies) WTGsmeiutosms\EDPIE_DM TesiRoom Add w3’
Crnd: MAP LOAD PLAYWORLD=1 FILE="UEDPIE_DM TestRoom_Add~

Log Finished foaking for orphan Actars (0.012 secs)

Log Spavmed Clear paths rebult

Lag Game clsss is UTDw o

atc

Log Pramary Phys¥ sceng will be in scdwars

Log Greating Primary Phys% Scene

Log ™ WARNING - PATHS MAY NOT BE vALID =

Log Brnging Wartd UEDPSE_DM-TestRoom_Add TheWarld up for pliay {3 &l 2008 (3131835 02
Coanilog.

fCompass:
Compass: Compass Heading 05535 37 4414 I
[Compass: e

T STy U e YT Iy 0w O TeTay

lem an.:gnmpu Craating niew player with Contrallerd 0

Elayoidansgement Successfidly croated now player with Conjrallord 0: EdilarPlayor 0

Izeni pl\ Varming

UTUIDataPrmider_OrfineFrisnds Transient UTUEDstaPrawider_OnlineFrisnds_ 1 (Function Enging UIDataPrmador_ OnnnFronds OnRagester 01F7) No GrlineSubaystem pretard. Cant watre Sinnds for playsr @)
Sl -.'mmg

1Dt Peavicer_OnlingPlayers Transiont, UiDataProwsder_OnlnePlayers_1 [Funclion Engine UDataPronder_OnlmaPlayars OnFegstor 0148) No OnlineSubaystem presant Cant roleiove rocent playess list for player
= criplie .fmmu

Ui DataProwder_OndineClaniates Trangient UiDataProvider_CanlineClankdates_1 {Functan Engine. LiDataProvider_OnlineClanklates OnRegistar 0135 Mo OnlineSubsysiem prasent Can® refreve clan mates for play
{SenpiWamning

LD staProvider_0 tlings Trarsiord UiDataProwdor_OnfnoProfieSettngs_1 (Function Engme, UDataProvder_OnlinaPrafieSetings: OnRegister 0202) No OnlineSubsystem presard, Can rfrievo profila |
Log UTPlay nr"DnlrnIIu Dgul playar EditorPlayar_0

S:rlplﬂ'dmlng UTFlayerControles UEDFIE_D-TesIRoom_Add TheWiorld PersistentLew | UTPlayerContraller_O (Funclion UTGame. UTPiay erContraBar ChenSetCrineStatus [1F) Accessed Mane OnlineSab’
Senpthog: UTPlayerControfier, ClientSetCinl nlineStaty 50) « Setting onbne staius for Controliedd O

[SeriptWarning. UTPlaynrCantrollsr UEDPIE_[- TestRoam _/ Add ThWerld Pnr istontLovel UTH ayarCantroller_O (Functicn UTGame. UTPay ssContraller ChamSetOrknoStatys 02C0) Accessed Mons OnlineSul’
ScripWaming. UTPlayerControlier UEDRIE_Di TesiRoom_Add The'World Persiste ntLeve | UTPlayarConteoller_D (Funclion UTGame. UTPiay erCaontrolier ClenSetOnkneS1atws 0208) Accessod Mong
EcnptWaming

LTPlayerController UEDPIE_DM-TesiRoam_Add TheWesld PersstentLovel UTPlayerCortroller D [Fu n LTGame UTPlay erConliollés CharacterPrc esssgCo mpeedr._luﬂlmcn ed Mone DnlinoSub’
Srrlpl\'\f:mlng JTPI“MFOHI milgr UEDPIE_D4 TestRoom_add TheWorld Parsis Iunllml\ﬂ?ln’nr\.onl?nllw D (Funciion UTGame. LT IF Tayor C:-nrlnl.nrl'*nr:r erPrmcessingComplete 0148} Accessed Nong

(Crd: SETSOUNDMODE I

EcriplLog: START MATCH

Serptlog: Mam Matchos Played: 0 =
| i e

Figure 13.7 - Excerpt of the games log file.

As we can see here, our compass is reporting the appropriate values, in both
radian and degree format, so our developers can do what they need to do. This
is a prime example of where planning and interfaces come together. Just to
recap, our process was as follows:

- See what the needs of the class will be

- Define the interface as per the specifications

- Define the functions for our class, implementing the interface as a failsafe
- Attach the necessary components

« Test

Now that we have a working implementation of this compass object, in the next
series of tutorials you will be building upon this idea to create a fully-functional
dynamic minimap system that follows the player’s position in the map and
displays the locations of other players within the map as well.

TUTORIAL 13.4 — THE MINIMAP, PART I: THE
MU_MINIMAP CLASS

Minimaps should be fairly familiar to anyone who has played any of the open
sandbox -style games that have been released recently. Essentially, this is a
map displayed on the screen at all times that shows a portion of the world
surrounding the player. As the player moves or turns, the map moves or rotates
with them. The minimap we will create will consist of two parts: the map and a
compass overlay

In order to create a working minimap system, we will need three things: a
subclass of the Compass class to place in the map and hold some data specific to
the map in question, a new heads up display (HUD) class that will handle
drawing the map to the screen, and a new gametype to force the new HUD class
to be used. The HUD class will extend the basic UTHUD class and simply add the
necessary functionality to draw the minimap. The gametype class will be a very
simple extension of the UTDeathMatch gametype which overrides the type of
HUD used and does a small amount of setup related to the minimap system.

To begin with, in this tutorial we will declare the MU_Minimap class which is a
subclass of the Compass class.

1. Open ConTEXT and create a new file named MU_Minimap.uc using the
UnrealScript highlighter.

2. Declare the new MU_Minimap class extending from the Compass class.
class MU_Minimap extends Compass;

3. This class needs several editable variables declared. First, a
MateriallnstanceConstant to hold a reference to the material to be used for the
map itself. We will take a look at the material setup later once we have all the
coding out of the way and we are ready to set up the MU_Minimap actor within
our map.

var() MateriallnstanceConstant Minimap;

Figure 13.8 - Anh example minimap texture.

4. Another MIC variable referencing the material for the compass overlay is also
needed.

var() MaterialinstanceConstant CompassOverlay;

A

|
Figure 13.9 - An example of a compass overlay texture.

5. A sphere component is added to the class and is made editable in order to
make setting up the level and getting the map screenshot just right. The idea is
that the location of this actor will represent the center of the map and the radius
of the sphere will represent the extent in each direction covered by the map.

var() Const EditConst DrawSphereComponent MapExtent sComponent;

6. A Bool variable named bForwardAlwaysUp will allow the designer to specify
whether the player’s forward movement should always be displayed as upward
movement on the screen or at offset from straight up by the North direction
angle as determined by the rotation of the MU_Minimap actor. The odds are good
this will always be set to True as it makes the most sense, but we will leave the
option.

var() Bool bForwardAlwaysUp;

Figure 13.10 - The arrow shows the direction of forward movement. On
the left with bForwardAlwaysUp set to False, and on the right with it set
to True.

7. In order to track the player’s position in the map and convert it to a position
in the map texture, we need to know the range of world space coordinates in the
X- and Y-axes that is covered by the map texture. Two Vector2D variables will
hold these values.

var Vector2D MapRangeMin;
var Vector2D MapRangeMax;

8. Another Vector2D variable will hold the X and Y world space coordinates
corresponding to the center of the map texture.

var Vector2D MapCenter;

9. The values of the MapCenter variable will be assigned in the PostBeginPlay()
function. Override this function and assign the values to this variable, making
sure to call the parent class’s PostBeginPlay() function as well.

function PostBeginPlay()

{
Super.PostBeginPlay();

MapCenter.X = MapRangeMin.X + (MapRangeMax.X - MapRangeMin.X) /
2);

MapCenter.Y = MapRangeMin.Y + ((MapRangeMax.Y - MapRangeMin.Y) /
2);
}

10. Next, still in the PostBeginPlay() function, calculate the extents in each axis
of the map by starting with the MapCenter and adding or subtracting the
SphereRadius of the MapExtentsComponent.

MapRangeMin.X = MapCenter.X - MapExtentsComponent.S phereRadius;
MapRangeMax.X = MapCenter.X + MapExtentsComponent.S phereRadius;
MapRangeMin.Y = MapCenter.Y - MapExtentsComponent.S phereRadius;
MapRangeMax.Y = MapCenter.Y + MapExtentsComponent.S phereRadius;

11. Finally, create the DrawSphereComponent with e default radius of 1024.0
and using the color green. Also, set the value of bForwardAlwaysUp to True in
the default properties as this is the most likely the desired functionality.

defaultproperties
{
Begin Object Class=DrawSphereComponent Name=Draw Sphere0
SphereColor=(R=0,G=255,B=0,A=255)
SphereRadius=1024.000000
End Object
MapExtentsComponent=DrawSphere0
Components.Add(DrawSphere0)

bForwardAlwaysUp=True
}

12. Save the script to preserve your progress.

TUTORIAL 13.5 — THE MINIMAP, PART II: THE
MINIMAPGAME CLASS

This tutorial focuses on the creation of the new Minimap gametype class. Its
purpose is simply to hold a reference to the MU_Minimap actor placed within the
map and tell the game to use the new HUD class we will create in subsequent
tutorials.

1. Open ConTEXT and create a new file named MinimapGame.uc using the
UnrealScript highlighter.

2. Declare the new MInimapGame class extending from the UTDeathMatch class.
class MinimapGame extends UTDeathMatch;

3. This class has one variable to declare, a MU_Minimap object reference named
GameMInimap.

var MU_Minimap GameMinimap;

4. When the game initializes, we must populate this variable with a reference to
the MU_Minimap actor placed within the map. Override the InitGame() function
making sure to call the parent class’s version of the function.

function InitGame(string Options, out string Error Message)

{

Super.InitGame(Options,ErrorMessage);

}

5. Inside the InitGame() function, a local MU_Minimap variable is needed.
local MU_Minimap ThisMinimap;

6. An AllActors iterator is used to find the MU_Minimap actor within the level and
assign it to the GameMinimap variable.

foreach
AllActors(class'MasteringUnrealScript.MU_Minimap',T hisMinimap)
{

GameMinimap = ThisMinimap;

break;

}

7. In the default properties, the HUDType variable of the gametype is overridden
to force the HUD class we will create to be used.

HUDType=Class'MasteringUnrealScript.MinimapHUD'

8. Also, the the MapPrefixes(0) variable is overridden to determine what maps
are associated with this gametype.

MapPrefixes(0)="COM"

9. Save the script to preserve your work.

TUTORIAL 13.6 — THE MINIMAP, PART III:
MINIMAPHUD INITIAL SETUP

With the minimap actor and gametype classes out of the way, we turn our
attention to the HUD class. In this tutorial, we will focus on declaring the class
and its variables as well as setting some default properties for those variables.

1. Open ConTEXT and create a new file named MinimapHUD.uc using the
UnrealScript highlighter.

2. Declare the MinimapHUD class extending from the UTHUD class.

class MinimapHUD extends UTHUD;

3. This class will also hold its own reference to the minimap actor in the level.
var MU_Minimap GameMinimap;

4. A Float variable named TileSize will hold a value specifying the amount of the
full map that will be displayed at any time. So if the full map texture is
2048x2048, and this value is 0.25, then the portion of the map texture that
would be displayed would be 512x512.

var Float TileSize;

Figure 13.11 - The portion of the map drawn using TileSize values of
0.25 and 0.5.

5. An Int variable named MapDim represents the dimensions of the map as
drawn on the screen at the default resolution of 1024x768.

var Int MapDim;

Figure 13.12 - MapDim specifies the dimensions of the map as drawn on
screen.

6. Another Int variable specifies the size of the box representing the players on
the map at the default resolution of 1024x768.

var Int BoxSize;

B
r

BoxSize

+100 . _ | o U
Figure 13.13 - BoxSize specifies the dimensions of the player box as
drawn on screen.

7. The last variable is an array of two colors which are used to draw the players
on the map. One of the colors is for the owner of the HUD and the other color is
for all the other players in themap.

var Color PlayerColors[2];
8. The default properties block should be fairly straightforward.

defaultproperties

{
MapDim=256
BoxSize=12
PlayerColors(0)=(R=255,G=255,B=255,A=255)
PlayerColors(1)=(R=96,G=255,B=96,A=255)
TileSize=0.4
MapPosition=(X=0.000000,Y=0.000000)

}

9. Save the script to preserve your progress.

TUTORIAL 13.7 - THE MINIMAP, PART 1V:
MINIMAPHUD FUNCTIONS

Before we move on to implementing the functionality for drawing the map, the
PostBeginPlay() and DrawHUD() functions need to be overridden in the
MinimapHUD class and a new function named GetPlayerHeading() is added.

1. Open ConTEXT and the MinimapHUD.uc file.

2. First, the PostBeginPlay() function is overridden and used to assign the
gametype’s reference to the minimap actor in the map to the GameMInimap
variable in this class.

simulated function PostBeginPlay()

{
Super.PostBeginPlay();

GameMinimap = MinimapGame(WorldInfo.Game).GameMi nimap;

}

3. Next, the DrawHUD() function is overridden and a call to the function which
will be responsible for drawing the map, the DrawMap() function, is added. This
will essentially force the map to be drawn at all times whether the player is alive
or dead an whether the game is still going or has ended.

function DrawHUD()

{
Super.DrawHUD();

DrawMap();
}

4. The GetPlayerHeading() function is very much like the GetRadianHeading()
function found in the Compass class created previously. Copy this function from
the Compass class and paste it into the MinimapHUD class now. The code below
should now be in the MinimapHUD class.

function float GetRadianHeading()
{

local Vector v;
local Rotator r;

local float f;

r.Yaw = GetYaw();

v = vector(r);

f = GetHeadingAngle(v);
f = UnwindHeading(f);

while (f < 0)
f+= Pl * 2.0f;

return f;

}

5. Change the name of the function to GetPlayerHeading()

function float GetPlayerHeading()
{

local Vector v;
local Rotator r;
local float f;

r.Yaw = GetYaw();

v = vector(r);

f = GetHeadingAngle(v);
f = UnwindHeading(f);

while (f < 0)
f+= Pl * 2.0f;

return f;

}

6. Next, change the line that reads:
r.Yaw = GetYaw();

To read:

r.Yaw = PlayerOwner.Pawn.Rotation.Yaw;

7. Save the script to preserve your work.

TUTORIAL 13.8 — THE MINIMAP, PART V:
DRAWMAP() INITIAL SETUP

The DrawMap() function is responsible for performing all the remaining
necessary calculations and drawing the map to the screen. In this tutorial, the
function and all local variables will be declared.

1. Open ConTEXT and the MinimapHUD.uc script.
2. Declare the DrawMap function.

function DrawMap()

{
}

3. Two local Floats will hold the headings for the direction of North as specified
by the minimap actor in the map and for the direction the player is currently
facing.

local Float TrueNorth;
local Float PlayerHeading;

4. Declare local Float variables for the rotation of the map and the rotation of the
compass overlay

local Float MapRotation;
local Float CompassRotation;

5. Several local Vector variables are declared. Their uses will be explained in
detail later.

local Vector PlayerPos;

local Vector ClampedPlayerPos;
local Vector RotPlayerPos;

local Vector DisplayPlayerPos;
local vector StartPos;

6. The minimap material uses a transparency mask to force the map to display in
a circular shape. In order to move this mask to the proper location, the R and G
components of a Vector Parameter are added to the texture coordinates to offset

the position of the mask texture. A LinearColor local variable is heeded to pass
the appropriate value to the Vector Parameter in the material.

local LinearColor MapOffset;

7. A local Float variable holds the distance in world space coordinates covered by
the map. For simplicity, we are requiring that a square map texture be used and
thus only one range is needed.

local Float ActualMapRange;

8. Finally, a local Controller variable is used with an iterator to draw the positions
of all the players within the map.

local Controller C;

9. Before moving on, the location the map will be drawn to on the screen as well
as the size of the adjusted size of the map and player boxes can be set. The
MapPosition variable of the class holds relative position values. Multiplying these
by the width and height of the viewport will result in the absolute position at
which to draw the map. The current width and height of the viewport are
provided in the form of the FullWidth and FullHeight variables.

MapPosition.X = default.MapPosition.X * FullWidth;
MapPosition.Y = default.MapPosition.Y * FullHeight;

10. The size of the map and player boxes is calculated each frame by multiplying
the default values of these variables by the scaling factor for the viewport at its
current resolution. This scaling factor is held in the ResolutionScale variable.

MapDim = default.MapDim * ResolutionScale;
BoxSize = default.BoxSize * ResolutionScale;

11. Save the script to preserve your progress.

TUTORIAL 13.9 — THE MINIMAP, PART VI:
PLAYERPOS AND CLAMPEDPLAYERPOS

The PlayerPos and ClampedPlayerPos variables hold the player’s current location
as a normalized offset from the center of the map. If you consider the length of
the full map being 1.0 in each direction, each component of these variables can
have a value between -0.5 and 0.5 since they represent offsets from the center.
You may be wondering why use an offset from the center of the map. The reason
is because the map will be rotated around its center inside of the material and
we need to know the position relative to that in order to calculate everything
correctly as you will see later on.

Of course, before we can calculate normalized values, we must know the length
the map covers in world space coordinate values. This is where we begin in this
tutorial.

1. Open ConTEXT and the MinimapHUD.uc script.

2. The ActualMapRange is calculated by taking the larger of the two ranges
between the X-axis and the Y-axis, though they should be equal. This merely a
failsafe. The range of each axis is calculated by taking the difference between the
values set in the MapRandMin and MapRangeMax elements of the GameMinimap.

ActualMapRange = FMax(GameMinimap.MapRangeMax.X -
GameMinimap.MapRangeMin.X,
GameMinimap.MapRangeMax.Y - GameMinimap.Ma pRangeMin.Y);

3. This next part is tricky because when taking the screenshot of the level to use
as the map, you must use the Top viewport inside of UnrealEd since this gives
you no perspective distortion. However, the axes as displayed in that viewport
have X in the vertical direction and Y in the horizontal direction. As far as the
HUD and Canvas are concerned, the horizontal direction of the viewport is X and
the vertical direction is Y. To complicate matters even more, the X-axis inside of
UnrealEd as seen from the Top viewport increases as it moves from bottom to
top, while the game’s viewport increases as it moves from top to bottom.

It boils down to the axes must be swapped and when dealing with the X-axis
world coordinates, the values must be the opposite sign. This will align the world
space coordinates as they would be in the Top viewport in UnrealEd with the way
they are handled with respect to the HUD.

Let’s start with the X component of the PlayerPos. To get the normalized offset
from the center, the map’s center must be subtracted from the location of the
player. Then that value must be divided by the range we just calculated.
Remember that the X component of a position in the HUD corresponds to the Y
component of world space locations.

PlayerPos.X = (PlayerOwner.Pawn.Location.Y —
GameMinimap.MapCenter.Y) / ActualMapRange;

4. The Y component of the PlayerPos corresponds to the X component of the
world space location, but must be multiplied by -1 in order to get the opposite
value. The easiest way to achieve this is simply to swap the order of the
subtraction.

PlayerPos.Y = (GameMinimap.MapCenter.X -
PlayerOwner.Pawn.Location.X) / ActualMapRange;

5. So that gives us the player’s position on the map, but what happens when the
player is very close to one of the edges? Since the minimap is designed to show
the player’s location in the center with the map all around it, we run the risk of
the map texture tiling if we allow the player to get close to the edge while still
displaying the player in the center of the minimap. To account for this, we will
use the ClampedPlayerPos variable to hold a second location which is limited to
always be just far enough from the edge to never allow any tiling.

anr \]
100 e _ 50|00 s | gne M50
Figure 13.14 - The map drawn without clamping on the left, and with
clamping on the right.

To do this, the FClamp() function is used. By passing the value to be clamped
along with the two limits to clamp it within, we can assure that the positions will
always be within a safe range. The two limits will be:

-0.5 + (TileSize / 2.0)
and
0.5 - (TileSize / 2.0)

We've already mentioned the normalized offset values are between -0.5 and 0.5.
Adding or subtracting half the portion of the map being displayed from these will
make sure the portion never overlaps causing tiling of the map texture.

Clamp the X component of the player’s position now.

ClampedPlayerPos.X = FClamp(PlayerPos.X,
-0.5 + (TileSize / 2.0),
0.5 - (TileSize / 2.0));

6. Now do the same for the Y component.

ClampedPlayerPos.Y = FClamp(PlayerPos.Y,
-0.5 + (TileSize / 2.0),
0.5 - (TileSize / 2.0));

7. Save the script to preserve your work.

TUTORIAL 13.10 — THE MINIMAP, PART VII: MAP
ROTATION

Now the fun begins as the map must be rotated to account for the direction the
player is facing. Rotating the map itself is actually extremely easy; we just pass
a radian value to a Scalar Parameter within the material the drives a Rotator
expression. Making this even easier, the Rotator within the material will rotate
the opposite direction of the rotation calculated by the GetPlayerHeading() or
GetRadianHeading() functions which is ideal since the map should rotate the
opposite direction that the player is turning.

The real fun part is calculating the rotated position of the player within the map.
We know the player’s position relative to the center of the texture, but the
moment that texture gets rotated, the position we just calculated no longer
corresponds to the spot on the map where the player should be displayed. With a
little trigonometry, though, we can calculate the rotated position. First, we need
to know how much to rotate everything.

1. Open ConTEXT and the MinimapHUD.uc script.

2. The TrueNorth and PlayerHeading variables need to be populated with the
appropriate radian values.

TrueNorth = GameMinimap.GetRadianHeading();
Playerheading = GetPlayerHeading();

3. Now, we can use those values to set the MapRotation, CompassRotation, and
InverseRotation values, but how we do that is dependent on the value of the
bForwardAlwaysUp variable of the GameMInimap minimap actor. Create an If-
statement with this variable’s value as the condition.

if(GameMinimap.bForwardAlwaysUp)

4. If bForwardAlwaysUp is True, the map is rotated based solely on the
PlayerHeading and the CompassRotation is the difference between the
Playerheading and TrueNorth.

MapRotation = PlayerHeading;
CompassRotation = PlayerHeading - TrueNorth;

5. If bForwardAlwaysUp is False, the map is rotated based on the difference
between the PlayerHeading and TrueNorth and the CompassRotation is the same
as the MapRotation.

MapRotation = PlayerHeading - TrueNorth;
CompassRotation = MapRotation;

6. The basic idea when rotating a point around another point is to use the
parametric equation of a circle:

The radius in this case, would be the distance from the center of the map to the
player’s position, or the length of the PlayerPos vector.

VSize(PlayerPos)

The angle of rotation requires a little more complexity to decipher. The angle of
rotation is the angle between the positive X-axis, or 0 radians, and the vector
from the center of the map to the position the player would be after being
rotated.

Rotated Player
sl Position

Player
Position

Figure 13.15 - The angle needed to calculate the rotated player’s
position.

You may be thinking to yourself, "The whole point of this is to calculate the
position of the player after being rotated. How do we find that angle if we don't
know the position?” We do know the player’s actual location and we can find the
angle between the positive X-axis and the vector from the center of the map to
that location. This is done by passing the Y and X components of the player’s

position to the Atan() function which calculates the arctangent given the lengths
of the opposite and adjacent sides of a triangle. For example:

Atan(PlayerPos.Y, PlayerPos.X)

Player
Position \

Y

Figure 13.16 - The angle to the player’s actual position.

And we know the amount that position is to be rotated. By subtracting the
MapRotation from the angle between the positive X-axis and the player’s
position, we can calculate the angle between the positive X-axis and the rotated
position. So the actual value of in the equations above is:

Atan(PlayerPos.Y, PlayerPos.X) — MapRotation

Rotated Player
| Position

Player
Position

Figure 13.17 - Subtracting the angle rotation leaves the desired angle.
Putting it all together, the rotated player position is calculated as:

DisplayPlayerPos.X = VSize(PlayerPos) * Cos(ATan(P layerPos.Y,
PlayerPos.X) - MapRotation);

DisplayPlayerPos.Y = VSize(PlayerPos) * Sin(ATan(P layerPos.Y,
PlayerPos.X) - MapRotation);

7. Notice we have set the DisplayPlayerPos by rotating the PlayerPos. We also
need to set the RotPlayerPos by rotating the ClampedPlayerPos in the same
manner.

RotPlayerPos.X = VSize(ClampedPlayerPos) * Cos(

ATan(ClampedPlayerPos.Y, ClampedPlayerPos.X) - MapR otation);
RotPlayerPos.Y = VSize(ClampedPlayerPos) * Sin(
ATan(ClampedPlayerPos.Y, ClampedPlayerPos.X) - MapR otation);

8. The DisplayPlayerPos is the actual position of the player on the rotated map
and is used to draw the player box. The RotPlayerPos is the position on the map
that represents the center of the displayed portion of the map. This is the
position that is used to find the StartPos, or the top left corner of the portion of
the map to be displayed. This is calculated by adding 0.5 to both the X and Y
components since they are offsets from the center and we need absolute values
now. Then, half the TileSize is subtracted from each. The result is then clamped
between 0.0 and 1.0 minus the TileSize just as one last precaution to make sure
no tiling occurs, though this value should already fall within these limits.

StartPos.X = FClamp(RotPlayerPos.X + (0.5 - (TileSi ze/
2.0)),0.0,1.0 - TileSize);
StartPos.Y = FClamp(RotPlayerPos.Y + (0.5 - (TileSi ze/

2.0)),0.0,1.0 - TileSize);

StartPos
|

Figure 13.18 - The upper left corner of the portion to be drawn is the
StartPos.

9. The final aspect of rotating the map is to set the MapOffset values to be
passed to the material to pan the transparency mask correctly. The R and G
components of the MapOffset inversely correspond to the X and Y components of
the RotPlayerPos. In other words, the RotPlayerPos values are multiplied by -1
and assigned to the R and G components of the MapOffset. But first, they are
clamped to the same range the ClampedPlayerRot values were clamped to
previously, again, as one last precaution.

MapOffset.R = FClamp(-1.0 * RotPlayerPos.X,
-0.5 + (TileSize / 2.0),
0.5 - (TileSize / 2.0));

MapOffset.G = FClamp(-1.0 * RotPlayerPos.Y,
-0.5 + (TileSize / 2.0),
0.5 - (TileSize / 2.0));

10. Save the script to preserve your progress.

TUTORIAL 13.11 — THE MINIMAP, PART VII: SET
MATERIAL PARAMS AND DRAW MAP

Everything needed to commence updating the material parameters and drawing
the map has been calculated and is ready to go. This tutorial will cover setting
the parameters of the map and compass overlay materials as well as drawing the
map, compass overlay, and player box.

1. Open ConTEXT and the MinimapHUD.uc script.

2. The map material has MapRotation, TileSize and MapOffset parameters.
MapRotation is a scalar parameter that controls the rotation of the map texture.
TileSize is also a scalar parameter that controls the tiling, and consequently the
size, of the transparency mask. MapOffset is a vector parameter that controls the
position of the transparency mask. The compass overlay material has a single
scalar parameter, CompassRotation, which controls the rotation of the overlay.
These can all be set using the appropriate Set*Paramater() function of the
MateriallnstanceConstant class and passing the name of the parameter and the
value to assign to it. The variables holding the values for each parameter have
been named the same as the parameter names to make it easy to know what
goes with what.

GameMinimap.Minimap.SetScalarParameterValue('MapRot ation',MapRotatio
n);

GameMinimap.Minimap.SetScalarParameterValue('TileSi ze',TileSize);
GameMinimap.Minimap.SetVectorParameterValue('MapOff set',MapOffset);
GameMinimap.CompassOverlay.SetScalarParameterValue('‘CompassRotation’
,CompassRotation);

3. Before we get into any drawing, we should briefly discuss how the HUD draws
items to the screen. In reality, the HUD doesn’t ever do any drawing of its own.
Another class, Canvas, contains all the drawing functionality. The HUD classes
contain a reference to the current Canavs and that is used any time an item
need to be drawn to the screen. Drawing the map is fairly simple once you
understand how things work. One important thing to keep in mind is the order in
which you draw items as an item drawn after another in the same location will
draw on top of the first..

First, the drawing position of the Canvas needs to be set to the location the map
should be drawn. This is specified by the MapPosition variable.

Canvas.SetPos(MapPosition.X,MapPosition.Y);

4. Next, the map is drawn using the DrawMaterialTile() function of the Canvas.
This function takes in the material to be drawn, the width and height of the tile
to be drawn, the position within the material to begin drawing, and the width and
height of the portion of the material to be drawn.

Canvas.DrawMaterialTile(GameMinimap.Minimap,
MapDim,
MapDim,
StartPos.X,
StartPos.Y,
TileSize,
TileSize);

Figure 13.19 - The map has been drawn to the screen.

5. Next, the position of the Canvas is set to the location to draw the player at.
This means the DisplayPlayerPos needs to be converted from an offset to an
absolute position, which is done by adding 0.5. Then, it must be converted to an
offset from the StartPos since only a portion of the full map is drawn by
subtracting the StartPos. That value is divided by the current TileSize to
normalize the value to the range 0.0-1.0. The normalized position in UV
coordinates is multiplied by the dimensions of the map tile, or MapDim, to
convert it to screen coordinates. Then, half the player box size is subtracted so

that the player box will be centered on the location. Finally, the whole thing is
added to the MapPosition.

Canvas.SetPos(MapPosition.X + MapDim * (((Displa yPlayerPos.X +
0.5) - StartPos.X) / TileSize) - (BoxSize / 2),MapP osition.Y +
MapDim * (((DisplayPlayerPos.Y + 0.5) - StartPos.Y) / TileSize) -
(BoxSize / 2));

6. The DrawColor of the canvas is set to the first element in the PlayerColors
array as this is the color we have chosen for the player.

Canvas.SetDrawColor(PlayerColors[0].R,
PlayerColors[0].G,
PlayerColors[0].B,
PlayerColors[0].A);

7. Now, the player box is drawn with the appropriate size.

Canvas.DrawBox(BoxSize,BoxSize);

O

\P!a yer Box

Figure 13.20 - The player’s box has been drawn to the screen on top of
the map.

8. To draw the compass overlay, the position of the Canvas is set back to the
MapPosition.

Canvas.SetPos(MapPosition.X,MapPosition.Y);

9. Then, the CompassOverlay material of the GameMinimap is drawn using the
DrawMaterialTile() function again.

Canvas.DrawMaterialTile(GameMinimap.CompassOverlay, MapDim,MapDim,0.0
,0.0,1.0,1.0);

Figure 13.21 - The compass overlay has now been drawn on top of the
map.

10. Save the script to preserve your progress.

TUTORIAL 13.12 — THE MINIMAP, PART VIII:
DRAWING OTHER PLAYERS

In this tutorial, each of the other players within the level will be drawn on the
map assuming they are located within the range visible in the minimap.

1. Open ConTEXT and the MinimapHUD.uc script.

2. After the code that draws the player but before the compass overlay is drawn,
set up an AllControllers iterator using the WorldInfo reference and passing the
base Controller class and the C local variable declared previously. The reason for
doing this after the player box is drawn and before the compass overlay is drawn
is two-fold. First, it allows us to reuse some of the variables used to calculate the
player’s position with no worries about overwriting their values. Second, by
drawing the compass overlay on top of everything, it hides the blinking out of
existence of the other players’ boxes when they leave the viewable area of the
map, resulting in a nice clean transition.

foreach Worldinfo.AllControllers(class'Controller’, C)

{
}

3. Now, use an If-statement to makes sure the current Controller in the iterator
is not the PlayerOwner so we don’t draw over it.

if(PlayerController(C) != PlayerOwner)

{
}

4. Inside this If-statement, the normalized offset position of the current
Controller’s Pawn needs to be calculated. This is the same as the
DisplayePlayerPos calculated for the player earlier only for the current Controller.
It is probably easiest just to copy the code calculating the PlayerPos and
DisplayPlayerPos already present and paste them into the If-statement.

PlayerPos.X = (PlayerOwner.Pawn.Location.Y -
GameMinimap.MapCenter.Y) / ActualMapRange;
PlayerPos.Y = (GameMinimap.MapCenter.X -
PlayerOwner.Pawn.Location.X) / ActualMapRange;

DisplayPlayerPos.X = VSize(PlayerPos) * Cos(ATan(P layerPos.Y,
PlayerPos.X) - MapRotation);
DisplayPlayerPos.Y = VSize(PlayerPos) * Sin(ATan(P layerPos.Y,
PlayerPos.X) - MapRotation);

Now, simply replace any occurrences of the term PlayerOwner with the C
variable.

PlayerPos.X = (C.Pawn.Location.Y - GameMinimap.MapC enter.Y) /
ActualMapRange;

PlayerPos.Y = (GameMinimap.MapCenter.X - C.Pawn.Loc ation.X) /
ActualMapRange;

DisplayPlayerPos.X = VSize(PlayerPos) * Cos(ATan(P layerPos.Y,
PlayerPos.X) - MapRotation);

DisplayPlayerPos.Y = VSize(PlayerPos) * Sin(ATan(P layerPos.Y,

PlayerPos.X) - MapRotation);

5. That gives us the actual rotated position of the current Controller’'s Pawn
relative to the center of the map. Now, we must make sure this position is within
a specific distance from the player’s rotated position to determine whether this
Controller should be drawn or not.

The VSize() function is used to get the distance from the player’s position to the
Controller’s position.

VSize(DisplayPlayerPos - RotPlayerPos)

The upper limit for this distance is basically half the TileSize less half the
diagonal length of the player box. The only problem is the TileSize is normalized
to the 0.0-1.0 range and the BoxSize is in screen coordinates so it must be
normalized.

Half the diagonal length of the player box is calculated like so:
Sqrt(2 * Square(BoxSize / 2))

To normalize that length, it must then be divided by the dimensions of the map
and multipled by the TileSize.

(TileSize * Sqrt(2 * Square(BoxSize / 2)) / MapDim)

So the final distance is half the TileSize minus that calculation.

((TileSize / 2.0) - (TileSize * Sqrt(2 * Square(Box Size / 2))/
MapDim))

Now, make an If-statement comparing the distance between the two players and
this distance.

if(VSize(DisplayPlayerPos - RotPlayerPos) <= ((Tile Size / 2.0) -
(TileSize * Sqrt(2 * Square(BoxSize / 2)) / MapDim))

{

}

6. Copy the three lines of code that draw the player’s box on the screen and
paste them inside the If-statement.

Canvas.SetPos(MapPosition.X + MapDim * (((Displa yPlayerPos.X +
0.5) - StartPos.X) / TileSize) - (BoxSize / 2),MapP osition.Y +
MapDim * (((DisplayPlayerPos.Y + 0.5) - StartPos.Y) / TileSize) -
(BoxSize / 2));

Canvas.SetDrawColor(PlayerColors[0].R,
PlayerColors[0].G,
PlayerColors[0].B,
PlayerColors[0].A);

Canvas.DrawBox(BoxSize,BoxSize);

7. Change the index of the PlayerColors array being accessed in the
SetDrawColor() function call to the second element.

Canvas.SetDrawColor(PlayerColors[1].R,
PlayerColors[1].G,
PlayerColors[1].B,
PlayerColors[1].A);

Figure 13.22 - The other players in the level now appear on the map.

8. Save the script and compile. Make sure the CompassContent.upk package
provided on the DVD with the files for this chapter is located within the
Unpublished\CookedPC directory. Fix any syntax errors which may be present.

TUTORIAL 13.13 — THE MINIMAP, PART IX: MAP
SETUP AND SCREENSHOT

Now it is time to start to put everything into place to test out the minimap
system. First, we need to set up a map with the MU_Minimap actor and et a
screenshot of it to use as the map.

1. Open UnrealEd and open the COM-CH_13_Minimap.ut3 map provided on the
DVD with the files for this chapter.

8B
@

Fialn? 8|0
R el

|
|G

[]
&

] Sle0le o/ aos| [P TIEIS] Aoj=] 8 ~| d.s)01] =] CeoewNos) PITIF S| A0 $# ~] Aals0

PIe
sm.

[=10 I Fore Pere oo peee e M lAE FE R R

Figure 13.23 - The COM-CH_13_Minimap.ut3 map.

2. Open the Actor Classes Browser and select the MU_Minimap class listed under
Actor->Compass->MU_Minimap.

Wactorclasses S IES]

File - Dicking
Genesic Aetin Clasees | meoups | Level | Refermrced mssets | Framiive stots | Dymamic Shadow Stabs | Scens Manspar | tog |
7 Lisa ko s Pavert?
7 Praceshls Classes Oriy?

= Ao -
M

Camtyesrinfs bear

3 ExmrgiaCle

Flock Altractor

FlockTestActor

i
RB_CyfirndricalForceidtor
RE_LimelmpubeActor
RB_RapEaiFaroeActor
RE_Radiallmgufse Actor
REB_Thauster

i Soprelapl sedo
@ Skeletaleshacior

Spured Tree Actior —r
S0 S M G

Biabobipert Trsl Actor

Test00E3_Metalata
* TestPlacmabileActor
+ Triaoer .:J

A_Charatee_ComuptEngma

A _Characee_CesrupdEngma_Cus

Ai_Tharackar_Fooksheps:

A Tharactar_boFemals

& _Charscter_aFemals Cus

A& _Charseter_Habsin

&, Charactsr_foale Cie

A _Character_Jestar

A _Cra et Mster_Cun il

Figure 13.24 - The MU_Minimap class is selected.

3. In the viewport, add a new MU_Minimap actor to the map. Place it near the
center of the map as best you can. It doesn’t have to be exact, just close. You
may also rotate the actor around the Y-axis if you wish to adjust the direction to
be used as North in this map.

Dleliuiel je] —— afFF olalsiFe 3w ol Siojel ol ki 8ilF Bl ol lkikicl s 5] 2 4]
o] EMW_IJPTBQI.@JDLIII_IMDIALJ gloeeos] pITIEls Alol=| 3 ~| dals|O

Ferol s

b

||
, (5 |G

s

»

e [ZL] ZECIeEaee [P T[E[S] dnie] # =] 44 s/01| &) OECew Nee] PITIF S| A/ 3 <] ddis)0
o

1l
20

| =1 Persstent Lovel v prso B I | O [T R T 7 U e e |~ i

Figure 13.25 - The placement of the MU_Minimap actor.

4. In the Top viewport, zoom out a good ways, and then open the Properties
Window with the MU_Minimap actor selected.

Find the SphereRadius property in the MU_Minimap category by expanding the
MapExtentsComponent section. Increase the value of this property until the
sphere in the viewport encompasses the entire playable area of the map. Try to
leave some empty space around the outside of the map as well. A good value for
this property would be around 1600.

=iz

) LfFEolalslfed <] sl ol siojel 8l kol P El] O] KIK|G] ehwmn b 2] 5

Uw] Elhl i
& ALJI_EL.MQLEJEL!_I _El?ﬂil__LELJ!I_.I éLALiJ]ﬁJ _LJFQJQIEIﬂlﬁlaI'I PIT[FI_ Il:ll-lj!_l_éJ_-éL}JIS
=0 an: 1FF: j TE e = 5= ;;: — 5
-!e%o Siini fff_l_lJ_l_i_J
s | A s a2 e Bt b 0 =il
oI | 5P B . -
vl - Bl o B
o<l RS
| = Bl Lackelorce)
A=k | = o
E =5 é'ﬂ!'i! u‘um Cobision .)
- i i =sinis bvkyvmeren H
it == awrertbiien
BB : [
" -1 s L |
“’L,b R R —
R R e e ERESEIN B ERt
-|e i '-'—'H..:E:...ﬁ._-.;‘.ﬁ_;%i_""' ISEEETE :_'.aﬂ:..:'."t-'..'}&t:: B e Cudfetance 1, EX0K 3
al - DepthPriont o [50mG_werls
) (Detadects D84 Law -
Eﬂ t'" Fekdecf o lD_
HH [
FIE] L —— "
T MotionBieScain 1, 00000 ;
Chveriide Tere [E]
Rbthaeel [Focc_petat =
Ht + RBCoMdewEhChamels (Dl e v ebicemfiaks,
RBDOmnanCeGTD 15
i kE Pﬁm 0 5
5 ey S § 0000
EHH ¥ scaken {1 00000, Y1 00000, 7= 00000

T
H bt

ie———————
i 3 S T T EHAOE U HEELE] TS S0 5 B T

I =1 Persstent Lavol MU Mrson_0 ouse: {-1250, 0, 55 oo [iomo [toom [oom e F_i,ﬁs e V-l I—_j

Figure 13.26 - The radius of the sphere has been adjusted.

5. Save this map now as we are going to be tearing it apart over the remainder
of this tutorial.

6. Before we can assign a map material and compass overlay material, we need
to take the screenshot of the level to be used for the minimap. Because this is an
indoor level, taking a screenshot from the Top viewport requires a little more
work than for an outdoor map; mainly the ceiling needs to be removed so we
can see into the rooms in the Top viewport.

a. This isn’t all that difficult in this case. Select one of the static meshes making
up the ceiling and then right-click on it and choose Select Matching Static Meshes
(This Class). This will select the ceiling and the floor.

['i@f..

=0l A)
©\0

|

L] Sleoje el aee]| [P TEIS] A0/=] 8 -] Alds)i0i] 2. C@oeee] PITIF S| Ao/ 8 -] aais 0

RN IRETLT
ﬂr.'l.e..-'ii

[=1 i Bationeshaciors Seected | 8 O [TR TR O TR | R
Figure 13.27 - All of the floor and ceiling meshes are selected.

b. In the Front or Side viewport, Hold Ctrl + Alt + Shift + Right Mouse Button
and then drag the marquee selection around the floor meshes that are selected.
This will remove them from the selection, leaving only the ceiling selected. Press
the Delete key to remove the ceiling.

TS

uiﬁm:u Piiivis .ﬂ]nl_lll_lili!;ﬁJiEl

ﬂﬂlﬁ? 8\p|©
B0 @

|5 |

0 | [
9|0, |@

r =1 2 Batichestactons Salected o G172 5, 542 8 R R T YT TR L TR | - R
Figure 13.28 - The marquee selection removes the items from the

selection.

c. Now, select the two light meshes in the center of each room, but do not select
the light actors themselves, and press Delete again to remove them.

o
»
v
=
©
=1

O OC |, |

[]

& [ZL 0o alaos| P T[FS] Alo=] 8 ~| da.s/01] 2. Oeoooao/s] PITIF S| H0[= 8 ~] Alls 0

r | o ot | o o e T R O e e [R
Figure 13.29 - The light meshes are removed.

d. Finally, select the blue Additive brush that surrounds the entire map and press
Delete to remove it.

LCH_12_Minimag - Unreal Dditor For Uneeal Tomrmament 3 (UT3) ‘Hz’
e e : S

@I sl ——) GfF Ol =] 8 o Jiciel B K 8P ms) O KIKIG] foremsm 7] 1] 5|
J 19 0eleN /s BT F[S| 5|0je| 8| -] dldlsi0f L] 20 001N Ejs Dl0f=| 8| ~| Aldls|0

@

L

¢85O
00

s

8] P[TjF 5] 0/=) 8 ~] AAs|0

RN IRETLT
RO

r 1 Berastent LewstErush 11 ! Poouses (07, 2393, 0 | I IV (P - T . T i - o |~ i |
Figure 13.30 - The brush is removed.

e. Finally, press the Build All button in the main toolbar to update the BSP and
lighting.

7. Select the MU_Minimap actor and then right-click on the Sheet Brush builder
button in the Toolbox to open the Sheet Brush options. Set the X and Y values to
3200 (the SphereRadius multiplied by 2) and click Build. The red builder brush
should update in the viewports.

[i 3 o - Lineeasl Ldiboe For Unee sl Tomrmsment. 3 008 3] '.hl![
Fie it Vs Pk fuld Joch e
o aldpsleiedels pIT ElS| Alole| M| -] ddlsiOf 4. o 20el@dols PITIE]S 1lo=| M ~| ddls|

@

¥

clera s e
©[0

=

||
» 5|

[]
&

] eeolewee] [P TEls] Anie] 3 -] Aa s 01| 2] SR See] PITIF 5] Ao 3 =] Ao

Brush Builder - Sheet

1l
9|0,

| =1 Persstent Level v prso B ! Powssen (560, 1024,) | O [T R T 7 U e e |~ i

Figure 13.31 - The builder brush is centered on the MU_Minimap actor.

8. Select the red builder brush and move it down below the geometry present in
the level. Find and select the M_Black material located in the CompassContent
package in the Generic Browsr and then click the CSG: Add button in the Toolbox
to create an additive sheet using the red builder brush with the M_Black material
applied.

real Lditor For Uneesl Tomrmament 3 (LT3)

1

Slo] —— BT slalsi e A Bl Soie] B k) wF mis ol ks e T alel
o LT S0Nee] P F[s] Aol 3] =] AasI0I[L Sososle]
e
I ey
Vb
L=
©|<<
[
)
===
|
LL,
1)
o & [EE0iE saele [P TIFls] Slole] # =] A2 5/101| .| Sleloele Aeie] PIT/F S| S[0/=] # =] As/0
&%

[=1 Persstent Lol Brush 2 ! Ponsze (1384, 2583, 6 O (1 (S T i T i e A |~ i |
Figure 13.32 - The sheet brush has been added.

9. Maximize the Top viewport and press the Lit button in its toolbar to display a
lit view of the map. Next, press the G key to toggle on game mode. You should
basically now see what will become the map texture used for the minimap.

W -0t 3_Minimag - Uneeal Editor for Uneesl Tosrmament 3 (UT3) =l&1x]

Fe Bt Vew Bsh Bd Took Heb
Olel-{mle] sle] —) G+ plala)ws = a0l Sio|e] 8] k| Bl(p i 9. [KIKIG] [ehwosn 0] 1] %]

[2] Slel0/o ei3e[e] pJT £Is] 4]0 = 8 = dldls! 0=

Mouses -240, 2405, 0) oo [ricne Jone faane e FrAas Fess W T A

Figure 13.33 - The Top viewport showing the lit view.

10. Getting from this point to the finished map texture is fairly easy.

a. Zoom out until the black sheet just barely fits within the viewport and press
the Print Screen key.

B Cu-1-CH_13_Minimag - Uneeal Editor For Uneeal Toumament 3 {U13) =lalx]
Fie Edt View Brsh Buld Took Help

Olel-=je] =le] ——1 i-__l?:I'-ITRI..'_?_IJ_J we =] g8} @] ¥C|® B k| & P E 2] O . [els|G] M roessen =I[v]] L]]
.| @le0le glaols] PIT Fis| A]o =] # -] 4ldls!C=E |

Pouser (ATT, 2438, 0} T T TR T e FHAs Fobs T A

Figure 13.34 - The sheet brush fills the viewport.

b. Now, open an image editing program and create a hew image. We will be
using Photoshop for this example.

ﬁ P

e T

Wit { 1220 | pivats

Heght: | 1024 jmﬂ
%’[me [puasisimh
coier Mode: [Foe e =] [gte

1 FEESE e I

il

e s e

s
¥l

Figure 13.35 - A new image is created.

c. Press Ctrl + V to paste the copied screen shot into the image.

B Adobe Photoshop - [map_minimag @ 75.1% (Layer 1, BG0/ 8] i i8] %]

A Pl Bt dnsge Liper Selact Fller View Windew Hep =I5 x|
j\v HEO & EE Qg s o weabe |[a

- - L O P PP TP T3 %

Ll L LR s
LI LN R R LT R O P O P) R B 0 P L OO U

o Ml Fme Sk bAE Bk fo:)
L e R el L | Blel+ojalaibee sl o] G000 k] mfp ma] 8, RIK[S] berrers =T L] &

A gedesiaos pfT Fls] o= 8 | ddls 0 ER

T !"_O

Bhieia: (1T, 1 0 i Hiew - = e Foeigy el T

id

[rem. o 25375 [31X i |

Figure 13.36 - The captured screenshot is pasted into the image.

d. Select the black portion representing the map texture and crop the image to
that area.

3 Adube Photoshop - [map_iminimag & B2.6% (Layer 1, G0/ e
A Pl Bt dnsge Liper Select Fller WView Windew Hep =I5 x|
1 TatE | il T N e | =il = Fad) in

y rit Coe N
TR - T - - - 1] Lo T S = T) T o T g 4 i % L2]

[wzsa Do TIN50 (3 |

Figure 13.37 - The image is cropped to the black area.

e. Now scale the image or adjust its size so that it is 2048x2048.

oI
W Fle B lrage Laye Skt Flter Vew Mindow b sl x|
1—F| VR | Raathe | r T (T | =3 = £t P, R e Freee e
P O PO PR . TR TP . PO - O P T e P e P s PP P P PP PP P o PO P L B L P 0 - |
-

]

z

2 ¥ Conttran Proportons

3 -

£ W Resample Image: | oy ke

[izes Cion 722189 v B

Figure 13.38 - The image is scaled.

f. Save the file in a format Unreal can import. A 24-bit Targa (.tga) file usually
works best.

11. You may save the map in UnrealEd if you wish to save it as you may need it
later to grab another screen shot. Just make sure you save it with a different
name so you don’t overwrite the real map.

TUTORIAL 13.14 — THE MINIMAP, PART X:
MINIMAP MATERIAL AND FINISHING TOUCHES

With the image for the minimap created, it is now time to import it into UnrealEd
and create the MateriallnstanceConstants for the minimap and CompassOverlay.
These must also be assigned to the corresponding properties of the MU_Minimap
actor within the level.

1. Open UnrealEd and the map from the previous tutorial with the MU_Minimap
actor added, not the map used for the screenshot.

2. Open the Generic Browser and select Import from the File menu. Select the
map image you saved in the previous tutorial and click Open.

a. In the dialog that appears, select the COM-CH_13_Minimap package in the
dropdown list of packages and name enter a new name if you like, or leave it at
the default of the name of the file.

e SEIES

&nu-lclmch;m|em|uul | efernnoed assets | Primtive Stets | Dynamic Shadow Stats | Scens Mansger [log |
EIOJE _J 8T o olsls] &) §wir

].

—I:IiID O0ooy
§ B
1 Y =

T0000A

Figure 13.39 - The level’s package is selected.

b. In the Options list, set the LODGroup to TEXTUREGROUP_UI. This is important
because Unreal Tournament 3 uses these groups to limit the sizes of textures.
The UI group will allow the texture to be displayed at its full 2048x2048 size so
no quality is lost beyond the usual compression artifacts.

e _aix)

e
Ganetic | actor Classes | eoups | evel | ieferanced masets | Primtiie Stats | Dynami Shadow Stals | Soens Maneger | log |

mOfE] &) (O @lR|E] M Gf wfss 2] el

Lerss Flre
Materisl

Material st ance Constark
Material Bt ance Tive Varying
MorphTangetSet
Marphitisiohis

Partiche Syvtem who
Physical Msters =

Rackage. | COMACH_ES Praag

anu:l

[T mry—

Mhmﬂel’aﬂll

l'bi 4

minieinienie

il s ._I. . L | Sebacted, 5 Tokil
Figure 13.40 - The TEXTUREGROUP_UI LODGRoup is selected.

c. If you want to speed up the import process, you can also check the
DeferCompression option as well. This will keep the compression from being
performed until you save the package, or in this case the map. Of course this will
slow down the saving process so it is a wash in the end.

. _isix)

s
Ganesic | actor Classes | Geoups | Level | Fisferanced Assets | Primtive Stats | Dynamic Shadow Stals | Soone Maneger | log |

EOfE] &1 [C ole[E] 8] O] sz =]

AnEaRin
e Traes
Alchatypst
oy Ararsation
Decal Material
FatnFx ArdmCel;
Farmfx fput

o CrE——

o

Padage . | COM-CH_ET M

ti-u.p!

e 5""“-"""“’“'

Bl From File Paeh. I

Figure 13.41 - The DeferCompression option is selected.
d. Click OK to import the texture.

Note: The package you choose should be the name of the level you are using. If
you named it something different, choose that from the package list instead.

3. Right-click on the newly imported Texture in the Generic Browser, or double-
click it, to open its properties. Scroll down to the SRGB property and uncheck it.
This turns off gamma correction. If this option is not turned off, the texture will
appear very, very dark when displayed on the screen.

T iax]

tnestc | actow Clossos | Grops | Lovel | eferanced tasets | Primeive Stots | Dynamec Shadow Staks | Scers Maneger | log. |

¥ Show Al esource Types

EOfE] w0 (e SleE] 8] O wdave =] el

Ansagion &
]
Auchetypet
Camers Anrsation
Decal Materisl
FagnFy Aremsel
Farefi fisser

Maberial Bt Congbant
Material Instare Tive Varying
MarphT argetset
Morphfsiohts

Partichs System

Pheysical Msteis

Properties

i ComgressmonPullnansBangs ||

| Comprmsontinalha]
| CongrassnSattings. [r_pefod
“

|”'J.rw
]

[remessacoe n
M~y

KA0H8[ABREGEES"]

Figure 13.42 - The SRGB flag is toggled off.

4. Now, find the M_minimap material in the CompassContent package. Right-
click on it and choose New Material Instance Constant.

File view Doding
Ganeric | actor Classes | s | Level | Fnfemanced asets | Primetve Stots | Dynamec Shadow Stals | Somne Manager | log |

=lagix]

Material Bt ance Congtart
Material Instare Tive Varying
MorphTametset
Morphiasighis

Fartic Jystam

Physical Msterad

(4 [T

a o Fa
3 COMCH_13_Mrinag®
3 CompaieContent
3 Dl puiitShin
3 Engn
il [Ervgne MI_Shaders
3 EragneFonts
3 Erepretaterisl
513 ErngireResources

F_HEEfTects

IJI_I ;J:‘ 1 Selacted, 7 Tokal

Figure 13.43 - A new MaterialInstanceConstant is created from the
M_minimap material.

a. In the dialog that appears, select the COM-CH_13_Minimap package in the
dropdown list of packages and enter a new name if you like, or leave it at the
default of M_minimap_INST. Click OK.

Note: The package you choose should be the name of the level you are using. If

you named it something different, choose that from the package list instead.

5. When the Material Instance Editor appears for the new
MateriallnstanceConstant, expand the ScalarParameterValues section and click
the checkboxes next to both the parameters listed. Then expand the
TextureParameterValues section and click the checkboxes next to each of those
parameters as well. Finally, expand the VectorParameterValues section and click
the checkbox next the parameter found there.

=laix]
Ganeric | actor Closses | Groups | ovel | eferanced tssets | Pt Stots | Dynamic Shadow Stabs | Scorne Mansget | g |

OIOfE L i1 [0 SIS[E] B & ez < el

¥ show Al Resosrce Types

Arsation
ArenTrees
Aurchetypet
awiner i Araraaion
Decal Material
e —— B 1 sl Material Instance Editor: COM-CH_1LE Minkimag) minimnap_ 1851

] ST
Haomnd Progertien: COM-CH_ LY Mrimep . mrimap ST %
Materisl bt ance Covr

Materisl fatgree Time | F FontParamsterYaliscs [T]
morchi argetset Farsnt P - SR
Marphiasights arial e ﬂw_-l
Particle Systam =

Pheysical Msters

=
Hatirial Instance Parents: COM-CH_ 13 Miremap W _manis X
Parerk | Hame

Maberal M
Current M_minimnap _INGT

3 COM-CH_13:Mrs
ComusspC ot enk.

1 (Dl LTSN
3 Engna
Ervgne_MI_Shade
Ersgneionts
Sranaetatenisl
a5 ErgreRiesources

1 P _HEETects

Hj—
Figure 13.44 - The MateriallInstance Editor.

6. Select the map texture you imported and then press the Use Current Selection
In Browser button of the MinimapTex parameter in the TextureParameterValues
section to assign the map texture to the material.

rES— sl

Ganeric | actor clasens | Grous | Level | Meferanced Assets | Prmtive Stots | Dymami Shadow Staks | Scons Manager | log |

¥ showAlResowce yes ||CIJE] w| [0 [@ @ 0[E] 8] O] vefzn =] ral

Wi

£ ojoo/ ¢l 2
Faterisl Progecties: COM-CH_L3_Mirimap i minmap: [RET ®
Material Intance Conr

Maberial Sratiarce T | !

MorphTarpetset Parent
Morphidslghts P L
Particls System il e
Physical Mstena ¥ v
= 2 b Statk CompomertMaskii
e el e > R .
14 ¥ StaticSeitchParainetesy. ..
& o TesturePacometecfahies
v BoarderTex
ol MinimapTen

Haterial Instance Pacenks: COM-CH_13 Miramap W mirem X
T

Parert | Nave |

Maberad - M_pririrnag

Current M_minimag _INST

3 COMCH_13 Mes
1 Cosiplont st
SR T e
5 Ereprm

5 i Ervpre_MI_Shade
5 E

i E Fonts
3 Erepredlateriss
5 Eraprellisoried

o Fr_HEEfedts

o’ ey o

Figure 13.45 - The map texture replaces the defaulit.

7. Back in the CompassContent package, right-click on the M_compass material
and choose New Material Instance Constant.

e
File Wiewy Dodang
taneric | ctor Clasces | Groups | tovel | Pfermnced Assets | Frimithve Stats | Dynamic Shadow Stats | Some Manoger | log |

Material et ance Corstant

Makerial Eritlafuin Tive Varying
Morphil & getsa
Meorphidisights

Particle System

Pheysical Matai ;I Copy Paderance
v = Expoat to Fle- ..

S Ch Fa
3 COMNCH_I3_Mininap®
I Gl orkenk
Dbt Shn

Erugnn
Ervgre_M]_Thaders
ErsgneFonts
Erspraiat o sk
Ergnefipsiaries

P _HEEfets

e

Figure 13.46 - A new MaterialInstanceConstant is created from the
M_compass material.

a. In the dialog that appears, select the COM-CH_13_Minimap package in the
dropdown list of packages and enter a hew name if you like, or leave it at the
default of M_compass_INST. Click OK.

Note: The package you choose should be the name of the level you are using. If
you named it something different, choose that from the package list instead.

8. When the Material Instance Editor appears for the new
MateriallnstanceConstant, expand the ScalarParameterValues section and click
the checkboxes next to both the parameters listed. Then expand the
TextureParameterValues section and click the checkboxes next to each of those
parameters as well.

9. Select the MU_Minimap actor in the level and open its properties by pressing
F4. Select the minimap MateriallnstanceConstant you just created and then click
the Use Current Selection In Browser button for the Minimap property. Then
select the compass overlay MateriallnstanceConstant and click the Use Current
Selection In Browser button for the CompassOverlay property.

M el Toumdment A0 =laix]
Dle-=|®] =l) L plalal e < 8l Of sioje) ekl ol(P mls] Ol KIKIS] et] 1] S

_L._H_EJ:._LEE@J_‘.!E'_I_!I _E.IT_L%]_LELJQ_JMEJ _MFMMJM_M!!_JMIS

L. gleloje wjaols|[p TIE[s] A|nje] # ~| 44510}

I =] Persstent Levnl MU_Mirwman | {mu,n,ua:l} - [iom [Lo;m [T 000 |1.nc:u”|-,|1:a th;“ﬁ;,ﬁ. =|!F;Jﬂ -l_:j
Figure 13.47 - The MaterialInstanceConstants have been assigned to the
MU_Minimap actor.

10. Save this map with any name you wish as long as it begins with "COM-" and
then either publish it by clicking the Publish Map buttonin the main toolbar or
since this is just a quick test, save a copy of it to the
Published\CookedPC\CustomMaps folder. Don'’t forget to copy the
CompassContent.upk to the Published\CookedPC directory as well.

TUTORIAL 13.15 — THE MINIMAP, PART XI:
TESTING THE MINIMAP

All of the code is in place and we now have a map set up to take advantage of
the new minimap system. It's time to test the minimap system in action.

1. Load up UT3 and login or choose to play offline.

2. Select an Instant Action game.

),

Al
(DUR

: Campaign
real, B
lﬁle ’ émf Multiplayer

"

3 | Community

Settings
Exit

|

fiejnosliw [foline

LOCaOuT SELECT

Figure 13.48 - Instant Action is selected.

3. Choose the MinimapGame gametype from the next menu.

' Unreal Tournament 3

CAME MOOE MAR SETTINGS X ~

NEXT BACH

Figure 13.49 - The MinimapGame is selected.

4. You should now see the map you saved in the previous tutorial as the only
map in the list. Double-click on this map.

*1 Linreal Tournansent 3

cCAaME MODE MARF SETTINGS - ~

SETUFR MAF CYCLE START GAME NEXT 8ACH

Figure 13.50 - The map is chosen.

5. Set the number of bots to 2 or less on the next menu as there are only
enough PlayerStarts in this small level for 2 bots to spawn besides the player.

ai0ixl

CAME MODE MAF SETTINGS o =

Average <

Number of Opponents
Goal Score

Time Limit

Force Respauwn

Record Demo

MUTATORS 80TS START GAME NEXT B8ACH

Figure 13.51 - Bots are set up.

6. Start the game. As soon as the level loads, you should see the map displayed
in the upper left corner of the screen, though turning or moving will have no
effect on it until the match begins.

' Unreal Tournanent 3

[] L
PressfFIRE] to Xart!

1.1_[,‘ Waiting for the Match to Begin...

Figure 13.52 - The map appears on the screen.

7. Begin the match and you should now see the map reflect the actual location of
the player within the map. Moving and turning should now cause the map to
update. You should also see the bots displayed as green boxes when you are
near enough for them to be displayed.

' Unreal Tournament 3 g - e =101 %]

+ 83 1 [7 ——'S_U

Figure 13.53 - The map reflects the player’s rotation and location.

The minimap system should be working just as we expected. Obviously, the
effect would be much more useful and interesting in a larger, outdoor
environment. This small indoor map was simply a quick means of testing it out.

TUTORIAL 13.16 — THE CAPTURE VOLUME, PART
I: INITIAL SETUP

Our mapper is back, and he has a new request. His map is in need of a new
volume that he can connect to some cool effects. Up to this point, he has been
working entirely in Kismet, and has created some very complicated sequences to
achieve a couple very simple tasks. It has fallen on our shoulders to create this
new volume and to implement the necessary Kismet definitions to replace his
entire Kismet sequence.

After a meeting with him we have drafted the following list of specifications:

It must be a placeable brush volume
It should be Light Green in color, to set it apart from other brushes by
default
It will have three output events in kismet
o Red Captured - When the red team accomplishes the capture
o Blue Captured - When the blue team accomplishes the capture
o Unstable - When contested or having its captured status change
It will have a few configurable elements
o Time to Capture - an integer set in the editor for each volume
(default 3)
o Minimum number of players to be able to Capture (default 1)
o Rewarded Points — Rewarded to the capturers (default 1)
It should have a timer, set to every half second, checking to see if the
capture is beginning
It should be toggleable

Even if we stay at the fifty thousand foot view of this it is a complicated problem
to solve. We will approach this problem in parts, breaking this apart into the
major bullet points, as that seems to be the most straightforward.

We'll begin by defining the Interface to be used by the volume.

1. Open ConTEXT and create a new file named ICaptureVolume.uc using the
UnrealScript highlighter.

2. Define the Interface for our new CaptureVolume.

interface ICaptureVolume;

a. Declare the OnToggle() function, which will tie into the enabled state of the
volume
function OnToggle(SeqAct_Toggle action);

b. Declare the CheckBeginCapture() function, which will be used to test the
occupants of our volume and returning whether the volume has begun being
captured.

function bool CheckBeginCapture();

c. The GetTouchingUTPawns() function is being used for its utility. It
accumulates all touching pawns and tosses them into the red or blue bowls,
which are then returned. Since we can only return a single value the out
variables are used. The function will return the overall count of characters within
the volume.

function int GetTouchingUTPawns(out array<UTPawn> r edTouching, out
array<UTPawn> blueTouching);

d. tCheckCapture() is the function hooked into our timer, and will be doing many
calculations behind the scenes.

function tCheckCapture();

e. The UpdateEvents() function is driving the output kismet interface, accepting
the flag for which event is being triggered.

function UpdateEvents(int flag);
3. Save this script to preserve your work.

4. With our interface clearly defined, it is time to lay down some pipe work for
the CaptureVolume itself. All volumes derive from the Volume class, and since
there are not any necessary things to derive from in the other derived classes,
we should follow suit. There isn’t a whole lot to this one, so we should just take
the step of writing this volume’s code.

a. Create a new file named CaptureVolume.uc using the UnrealScript highlighter.

b. Defining our class, implementing the ICaptureVolume Interface

class CaptureVolume extends Volume placeable
implements(ICaptureVolume) Config(UTBook);

c. We will now take a pitstop in the default properties. There is only one element
here of note, and that is the BrushColor. It accepts the same integer values as
we experienced in the compass tutorial.

defaultproperties

{
/I For UnrealEd And to avoid removal
BrushColor = (B=128, G=255, R=128, A=255)
bColored = True
bStatic = false

}

d. We can compile at this point and actually see our new volume in the editor, if
we follow the steps previously described. This volume will work just as the other
volumes, and sow up in the volumes quick-listing, only this one will be a light
green.

Figure 13.54 - Our New CaptureVolume in the UnrealEditor

5. This is the point when things start getting tough. We are going to create a
number of variables for our mappers to be able to configure the various elements

of this volume. This is also the point when we can create a couple enumerations
to help the readability of our code. Below you will find a block of code that
contains inline commentary about the purpose of the variables. The default
properties are updated and appended to the end.

a. ECaptureEvent is an enumeration of the three triggered status. This is mainly
done for readability concerns, serving as a replacement for magic constants
floating in our code.
enum ECaptureEvent
{

CAP_REDCONT,

CAP_BLUECONT,

CAP_UNSTABLE

8

b. ETeams is straight forward, and serves a similar purpose to the previous
enumeration.

enum ETeams
{
RED_TEAM,
BLUE_TEAM,
NO_TEAM

|8

c. Now we get into the meat of the class. iTimeToCapture is an integer variable
that controls the number of seconds required to capture the volume. Each of the
next three variables are available to the mapper, under the Capture subcategory,
controlled by the (Capture) statement.

var (Capture) int iTimeToCapture;

d. iPointReward is the reward granted to the capturing group, on an individual
basis. If the mapper chooses he doesn’t want a value here, she can change it to
0.

var (Capture) int iPointReward;

e. This variable is actually important. The volume will only be triggered if this
number of players are present within the volume.

var (Capture) int iMinimumPlayersForCapture;

f. These two variables are used to keep track of the state of the volume, i.e. who
is in control of it and who is trying to take control, respectively.

var int CapturingTeamiD;
var int CapturedTeamID;

g. TimeCapturing keeps track of the Interval of time spent capturing this volume.

var float TimeCapturing;

h. In order to keep track of who is taking part in capturing this volume,
CapturingMembers is used.

var array<UTPawn> CapturingMembers;

i. This is used by the toggle routine to make sure that our volume is able to be
turned off or on as our mapper sees fit.

var bool bEnabled;

6. We should now update the default properties to reflect the new variables
default variables. The default properties block stands on its own now, but I will
point out the use of a constant from our enumeration beign assigned to
CapturedTeamlID, setting the default value to a clearly defined value. The other
values have been handed down by our mapper.

defaultproperties
{
I/l For UEd setup mainly.
BrushColor = (B=128, G=255, R=128, A=255)
bColored = True
bStatic = false

// Default values for the volume
iMinimumPlayersForCapture = 1
CapturedTeamID = NO_TEAM
iTimeToCapture = 3
iPointReward = 5

}

7. Save the script to preserve your progress.

TUTORIAL 13.17 — THE CAPTURE VOLUME, PART
II: TOUCH AND TIME

We have our volume in the editor, now we should step into some of the more
interesting aspects of the volume. There is one, in particular, that will prove to
be much easier if we address it off the bat; when we the volume is being
touched. This can be a very complicated matter, but luckily, we have been
granted an event function, Touch.

This Touch Event will trigger a timer that will confirm our captured state
changes. Timers are very useful for keeping track of things that do not need to
be checked every tick, but need to be checked at a time interval nonetheless.
You simply pass them a float value, whether it is recursive, and the callback
function that we are trying to have executed at this interval. Our specification
has already described this timer, so let’s get that taken care of as well.

1. Open ConTEXT and the CaptureVolume.uc script.
2. First we have to define our Touch event.

event Touch(Actor Other, PrimitiveComponent OtherCo mp, vector
HitLocation, vector HitNormal)

{
}

3. Within most derived functions it is in our interest to call the super version of
it, to avoid breaking dependency or expected value assignments.

Super.Touch(Other, OtherComp, HitLocation, Hitnorma N;

4. When our volume is enabled we will want to execute our timer, which is tied
to a function. We have the interval set to 0.5 seconds here, and we also pass
true as the second parameter to allow the timer to run every 0.5 seconds until
we stop it.

if (bEnabled) // If we are enabled... go crazy.
SetTimer(0.5f, true, 'tCheckCapture’);

5. Moving on from the Touch event, we have to deal with the touching issue. Our
utility function is going to prove itself to be invaluable, so let’s get this taken
care of now. Defining the function and its arguments.

function int GetTouchingUTPawns(out array<UTPawn> r edTouching, out
array<UTPawn> blueTouching)

{
}

6. The Count variable will be the inclusive, that is — both teams, number of
UTPawn’s within the volume. It will be returned at the end. P is used for
iterating, in just a moment.

local int Count;
local UTPawn P;

Count =0;

7. Iterating through the necessary pawns is not as terrible as it may sound.
UnrealScript has a number of very useful iterators, but make sure you don’t use
them without purpose and thought. They can be very costly, especially within
tick functions.

foreach self.TouchingActors(class'UTPawn', P)

{
}

8. We want to make sure the Pawn is alive, and if not move on to the next one.

if (P == None || P.health <= 0 || P.Controller.IsDe ad() ||
P.GetTeam() == None)
{
continue;
}

9. Granting that they have lived, we need to add them to the appropriate team.

if (P.GetTeam(). Teamindex == RED_TEAM)

{
redTouching.Addltem(P);

Count++;

}

else

{
blueTouching.Addltem(P);

Count++;

}

10. Finally returning the Count.

return Count;

11. Save the script to preserve your progress.

TUTORIAL 13.18 — THE CAPTURE VOLUME, PART
IIT: THE CAPTURED STATE

We now have a good portion of the volume mapped out, and the vision is coming
together. Our volume has a few interesting functions that serve a utility purpose,
or another, bu there are still a couple further hurdles to step over. Next we will
be stepping into the CheckBeginCapture routine, which is going to return the
Boolean truth of this situation.

1. Open ConTEXT and the CaptureVolume.uc script.
2. As usual, we need to define our function, as per our interface.

simulated function bool CheckBeginCapture()

{
}

3. We need a pair of arrays, to hold onto the red and blue pawns, the
calculations will be driven by them.

local array<UTPawn> redTouching;
local array<UTPawn> blueTouching;

4. Create a counter that is used to keep track of the size of the capturing team,
simplifying the final test.

local int Count;

5. We can use the GetTouchingUTPawns utility function to fill our arrays off the
bat.

GetTouchingUTPawns(redTouching, blueTouching);

6. Check the size, if there are no players in this volume, clear the timer and
return.

if (blueTouching.length == 0 && redTouching.length ==0)

{
ClearTimer('tCheckCapture', self);

return false;

7. If there is more than one team present we need to send the CAP_UNSTABLE
trigger, and return.

else if (!(blueTouching.length == 0 " redTouching. length == 0))
{

UpdateEvents(CAP_UNSTABLE);

return false;

}

8. With those two tests out of the way we can rest assured that we only have
red or blue, but not both, teams present. Focusing on red first...

if (redTouching.length > 0)

{
}

a. Copy the players touching the volume into an array we will use later to do the

payout of points.
CapturingMembers = redTouching;

b. Get the count of the players here.

Count = redTouching.length;

c. Set the CapturingTeamlID to the red team
CapturingTeamID = RED_TEAM,;

9. And now mirror what we just did for the blue team.

else

{
CapturingMembers = blueTouching;
Count = blueTouching.length;
CapturingTeamID = BLUE_TEAM;

}

10. Test the count to make sure that this volume is able to be captured now,
and make sure that the capturing team is not the captured team. This second
test is to ensure that the volume doesn’t get captured by the same team,
bloating scores.

if ((iIMinimumPlayersForCapture <= Count) && (Captur ingTeamID !=
CapturedTeamiID))

return true;
else

return false;

11. Save the script too preserve your work.

We now have a good majority of our class laid out. There are only a few
functions left to address, so it will not be too much longer for us to be completed
and see some really cool events in game.

TUTORIAL 13.19 — THE CAPTURE VOLUME, PART
IV: THE TIMER FUNCTION

The next step is going to be the timer function. This function is executed every
0.5 seconds, so it is good to keep that in mind, as real time game development
can be very unfriendly to inefficient functions.

1. Define our tCheckCapture function.

simulated function tCheckCapture()

{
}

2. We need to create a couple variables to help with the iteration we will be
doing later.

local UTPawn P;
local UTPlayerReplicationinfo ScorerPRiI;

3. If the TimeCapturing is negative, clear its value.

if (TimeCapturing < 0)
TimeCapturing = 0;

4. Now we call our CheckBeginCapture function, to see whether we need to be
triggering anything. If not we need to clear quite a few things. Note that we will
need to clear the timer when done.

if (!CheckBeginCapture())
{
CapturingTeamID = NO_TEAM,;
TimeCapturing = 0;
ClearTimer('tCheckCapture', self);
return;

}

5. If we are supposed to begin capturing we should update the time spent
capturing now, which is not entirely intuitive, but thanks to Epic there is a
function that will help us.

TimeCapturing += GetTimerRate('tCheckCapture', self);

6. With this new time value we can check against the configurable value for this
volume. If it is greater or equal we need to go ahead with the capture.

if (TimeCapturing >= iTimeToCapture)

{

}

a. If the capturing team is Blue, send out the blue capture event, and vice versa
for red.

UpdateEvents(CapturingTeamID == BLUE_TEAM ? CAP_BLU ECONT :
CAP_REDCONT);

b. Increment the scores for the capturing players. This is where we are using the
two variables defined earlier.

foreach CapturingMembers(P)

{
ScorerPRI =

UTPlayerReplicationinfo(P.Controller.PlayerReplicat ioninfo);
ScorerPRI.Score += (iPointReward);
ScorerPRI.bForceNetUpdate = TRUE;

}
c. Update the Captured Team ID.

CapturedTeamID = CapturingTeamID,;

d. And finally, clear out the Capturing team ID as well as the time capturing
counter, followed by clearing the timer. This is important to do so we don’t end
up recalling this function.

CapturingTeamID = NO_TEAM,;
TimeCapturing = O;
ClearTimer('tCheckCapture', self);

7. Save the script.

TUTORIAL 13.20 — THE CAPTURE VOLUME, PART
V: UPDATING THE EVENTS

When we want to trigger the sequence events it is necessary to loop through all
of the sequence events of our volume and send out the appropriate flag. This
function handles this, including the looping.

1. Open ConTEXT and the CaptureVolume.uc script.

2. Define the function and declare a couple variables for ease of use, and
iteration.

function UpdateEvents(int flag)

{
}

3. Declare a local Int variable to be used in a For loop and a
SeqgEvent_VolumeCaptured object reference for use with an iterator.

local int i
local SeqEvent_VolumeCaptured CaptureEvent;

4. Begin a loop, over all GeneratedEvents. This is an array that comes into play
when working within kismet, and other event sequences.

for (i = 0; i < GeneratedEvents.Length; i++)

{
}

5. Inside the loop, cast the generated event into a VolumeCaptured sequence
event and if the cast works send it the appropriate flag. This function,
Notify_VolumeCaptured, will lead to our use of an interface.

CaptureEvent = SeqEvent_VolumeCaptured(GeneratedEve ntsli]);
if (CaptureEvent != None)

{
CaptureEvent.Notify VolumeCaptured(flag);

}

6. Save the script.

TUTORIAL 13.21 — THE CAPTURE VOLUME, PART
VI: TOGGLING THE VOLUME OFF & UPDATING
OUR DEFAULTPROPERTIES BLOCK

We only have a single function left for this class, and that is the toggle function.
1. Open ConTEXT and the CaptureVolume.uc script.

2. OnToggle is called when attached to a toggle event. This works just as the
Lights and other actors do.

simulated function OnToggle(SegAct_Toggle action)

{
}

3. It accepts a Sequence Action and checks the impulses for them. The indexes
are 0, 1 and 2, which are connected to On, Off and Toggle, respectively.

if (action.InputLinks[0].bHasImpulse)
bEnabled = TRUE;

else if (action.InputLinks[1].bHasImpulse)
bEnabled = FALSE;

else if (action.InputLinks[2].bHasImpulse)
bEnabled = bEnabled;

4. Then we force the network update

ForceNetRelevant();

5. Our default properties block needs to be updated now, to include the Capture
sequence Event that we are going to be implementing in just a moment.

defaultproperties
{
I/l For UEd setup mainly.
BrushColor = (B=128, G=255, R=128, A=255)
bColored = True
bStatic = false

/I Default values for the volume
iMinimumPlayersForCapture = 1

CapturedTeamID = NO_TEAM
iTimeToCapture = 3
iPointReward = 5

/l Attach our output events
SupportedEvents(0)=Class'UTBook.SeqEvent_VolumeC aptured’

}

6. Save the script.

TUTORIAL 13.22 — THE CAPTURE VOLUME, PART
VII: THE SEQUENCE EVENT'S INTERFACE AND
IMPLEMENTATION

We have completed the Volume and need to write the code for the Captured
Volume Sequence Event. These can be a bit irritating, try not to let them get to
you too much. This one is simple enough, so lets get started.

1. Open ConTEXT and create a new file named ICaptureSequenceEvent.uc using
the UnrealScript highlighter.

2. The interface for our sequence event needs only to declare a single function.
Let’s do that.

interface ICaptureSequenceEvent;

function Notify_VolumeCaptured(int outputindex);
3. Save the script.

4. Implementing the function is going to be following the same pipework that
was laid previously. Create a new file named SeqEvent_VolumeCaptured.uc
using the UnrealScript highlighter.

5. Define the class, extending SequenceEvent and implementing the interface we
just declared.

class SegEvent_VolumeCaptured extends SequenceEvent
DependsOn(CaptureVolume) implements(ICaptureSequenc eEvent);

6. Define our function, Notify_VolumeCaptured().

function Notify_VolumeCaptured(int outputindex)

{
}

7. Declare a local dynamic array of Ints and create a log statement to output the
value of the parameter sent to the function.

local array<int> Activatelndices;

“log("Notify_VolumeCaptured has been executed" @
outputindex,,"UTBook’);

8. We only send a single trigger at a time, since there is only one to worry
about.

Activatelndices[0] = outputindex;

if (CheckActivate(Originator, None, false, Activate Indices))
{

“log("Notify_VolumeCaptured has been activated", ,UTBook’);
}

9. Stepping into the default properties block, we have a few links to take into
account and connect where necessary.

defaultproperties

{
}

10. These Links are important, their index are the actual values being sent
around

OutputLinks(0) = (LinkDesc="Red Capture")
OutputLinks(1) = (LinkDesc="Blue Capture")
OutputLinks(2) = (LinkDesc="Unstable")

11. And now a couple tweaks to the kismet element, assigning its name,
category and max trigger count defaults.

ObjName = "Volume Captured"
ObjCategory = "Objective"
MaxTriggerCount = 0 // Default to being triggered i nfinite times.

12. Finally, we want to make sure the player does not trigger this event,
exclusively.

bPlayerOnly = False

13. Save the script.

TUTORIAL 13.23 — PLACING A CAPTUREVOLUME
AND SEEING IT IN ACTION

With that, we have completed the volume and its sequence event, so you have a
clear example of how to create either for your own mod. This tutorial illustrates
iterators quite well, showing how they work like a for each loop does in other
languages.

1. Once again we have to load up our Editor and compiled code package. Load
up the editor and create a new map.

2. Open up the Actor Classes browser.

3. Navigate to File > Open then navigate to your Scripts directory, where your
compiled .u file resides.

4. Once the package has loaded, the new volume should be seen, under Actor >
Brush > Volume, as seen in Figure 14. Select it and go over to your map. You
should now be able to right click and an “Add Compass Here” menu option
provided to you.

— Actor Classes =)
File Docking i
Actor Classes | Groups | Level | Referenced Al#1#
EI Use "Actor’ As Parent?

[¥] Placeable Classes Only?

= Actor b

BlockingVolume

ColorscaleVolume
CullDistanceVolume
FoliageFactory
LevelStreamingVolume

Figure 13.55 - Actor Class Browser with our CaptureVolume

5. Place one of the volumes in the middle of the map. We are going to be setting
up a kismet sequence in just a moment. In Figure 15 we can see the options that
we designated for the new volume, visible in the Capture subcategory.

CaptureVolume_1 Properties %
& E B0 =

Advanced

Attachment

iMinimumPlayersForCapture

iPointReward
imimeToCapture

Figure 13.56 - The new settings for our mapper

6. The next step is to open up kismet and see our new sequence event. With one
of the volume selected, open up the kismet editor and right click. In the context
menu should be an option to create new event for your selected capture volume,
and under that should be our sequence event - Volume Captured. The element
that is drawn for us will look like this:

o o

= Ih i
= Fzirejzir

HEnlGamEbire]
HIMENESELUTE] S

ez ez hIEe| | ' "
- i

e out
Fire|sit

=]
w0
Sequences

: |
Figure 13.57 - Kismet of our Volume

7. You can go ahead and create a sequence here, so that we can see this
element in action. Here is mine.

R ® T =/ 2% K

[|

dirs (T s -
e

e e [:ltl_lr'E!! £ =
Bl E S e
Urstatile] 8
T s
B =T ED

[:1—:[*| B sequences
- DM-TerrTest - Sequence [3]

Sequences

Figure 13.58 - The Kismet Demo, featuring a Custom Kismet Event

8. Now that you have that completed, we can save the map out and start it up.
We should see something like the following in your log file:

Log: Family Asset Package Loaded: CH_Corrupt_ Arms_S F

Log: CONSTRUCTIONING: LoadFamilyAsset (LIAM) Took: -0.01 secs
ScriptLog: Finished creating custom characters in 1 .8737 seconds
Error: Can't start an online game that hasn't been created

ScriptLog: START MATCH

ScriptLog: Num Matches Played: O

UTBook: Notify VolumeCaptured has been activated
Log: Kismet: Red Capture

UTBook: Notify VolumeCaptured has been activated

UTBook: Notify VolumeCaptured has been activated

Log: Kismet: Blue Capture

UTBook: Notify VolumeCaptured has been activated

Log: Kismet: Red Capture

Error: Can't end an online game that hasn't been cr eated
Log: Closing by request

Log: appRequestExit(0)

9. We can see here, the scoreboard is being updated with our volume being
captured during the game.

14, Teom DenthMaotch

Flred Fedige fo frog 50 TSR

Figure 13.59 - The scoreboard shown 40 seconds in on the left and 95
seconds in on the right.

And with that we have completed this tutorial. Lets step back through it quickly
and highlight some of the important aspects.

Interfaces can be created for any Class we are going to develop

Volumes are not difficult to create, or configure to do our bidding

Kismet is actually created through Sequence Events, and they have a very
simple interface

Iterators save us a lot of time and energy, but can be very costly
depending on where you call them.

Planning something out helps ease the process of developing and can
speed it up if approached correctly

INTERFACES WITHIN UT3

The listing that follows includes all non test related interfaces within Unreal
Tournament 3 that may be helpful. There are others, but they are either native

or relating to native processes within the game which are beyond the scope of
this book.

IQueryHandler |

struct KeyValuePair

struct WebAdminQuery

function init(WebAdmin)

function cleanup()

function bool handleQuery(WebAdminQuery)

function bool unhandledQuery(WebAdminQuery)

function registerMenultems(WebAdminMenu)

ISession

function string getld()

function reset()

function Object getObject(string)

function putObject(string, Object)

function removeObject(string)

function string getString(string, optional string)

function putString(string, string)

function removeString(string)

ISessionHandler

function ISession create()

function ISession get(string)

function bool destroy(ISession)

function destroyAll()

IWebAdminAuth |

function init(WorldInfo)

function cleanup()

function IWebAdminUser authenticate(string, string, out string)

function bool logout(IWebAdminUser)

function bool validate(string, string, out string)

function bool validateUser(IWebAdminUser, out string)

IWebAdminUser |

struct MessageEntry

function string getUsername()

function bool canPerform(string)

function PlayerController getPC()

function messageHistory(out array, optional int)

OnlineAccountlInterface

function bool CreateOnlineAccount(string,string,string,optional string)

delegate OnCreateOnlineAccountCompleted(EOnlineAccountCreateStatus)

function AddCreateOnlineAccountCompletedDelegate(delegate)

function ClearCreateOnlineAccountCompletedDelegate(delegate)

function bool CreateLocalAccount(string,optional string)

function bool RenameLocalAccount(string,string,optional string)

function bool DeleteLocalAccount(string,optional string)

function bool GetLocalAccountNames(out array)

function bool IsKeyValid()

function bool SaveKey(string)

OnlineContentinterface

delegate OnContentChange()

function AddContentChangeDelegate(delegate, optional byte)

function ClearContentChangeDelegate(delegate, optional byte)

delegate OnReadContentComplete(bool)

function AddReadContentComplete(byte,delegate)

function ClearReadContentComplete(byte,delegate)

function bool ReadContentList(byte)

function EOnlineEnumerationReadState GetContentList(byte, out array)
function bool QueryAvailableDownloads(byte)

delegate OnQueryAvailableDownloadsComplete(bool)

function AddQueryAvailableDownloadsComplete(byte,delegate)

function ClearQueryAvailableDownloadsComplete(byte,delegate)

function GetAvailableDownloadCounts(byte,out int,out int)

OnlineGamelnterface

function bool CreateOnlineGame(byte,OnlineGameSettings)
delegate OnCreateOnlineGameComplete(bool)

function AddCreateOnlineGameCompleteDelegate(delegate)
function ClearCreateOnlineGameCompleteDelegate(delegate)
function bool UpdateOnlineGame(OnlineGameSettings)

function OnlineGameSettings GetGameSettings()

function bool DestroyOnlineGame()

delegate OnDestroyOnlineGameComplete(bool)

function AddDestroyOnlineGameCompleteDelegate(delegate)
function ClearDestroyOnlineGameCompleteDelegate(delegate)
function bool FindOnlineGames(byte,OnlineGameSearch)
delegate OnFindOnlineGamesComplete(bool)

function AddFindOnlineGamesCompleteDelegate(delegate)
function ClearFindOnlineGamesCompleteDelegate(delegate)
function bool CancelFindOnlineGames()

delegate OnCancelFindOnlineGamesComplete(bool)

function AddCancelFindOnlineGamesCompleteDelegate(delegate)
function ClearCancelFindOnlineGamesCompleteDelegate(delegate)

function OnlineGameSearch GetGameSearch()

function bool FreeSearchResults(optional OnlineGameSearch)

function bool JoinOnlineGame(byte,const out OnlineGameSearchResult)
delegate OnJoinOnlineGameComplete(bool)

function AddJoinOnlineGameCompleteDelegate(delegate)
function ClearJoinOnlineGameCompleteDelegate(delegate)
function bool GetResolvedConnectString(out string)
function bool RegisterPlayer(UniqueNetld,bool)

delegate OnRegisterPlayerComplete(bool)

function AddRegisterPlayerCompleteDelegate(delegate)
function ClearRegisterPlayerCompleteDelegate(delegate)
function bool UnregisterPlayer(UniqueNetId)

delegate OnUnregisterPlayerComplete(bool)

function AddUnregisterPlayerCompleteDelegate(delegate)
function ClearUnregisterPlayerCompleteDelegate(delegate)
function bool StartOnlineGame()

delegate OnStartOnlineGameComplete(bool)

function AddStartOnlineGameCompleteDelegate(delegate)
function ClearStartOnlineGameCompleteDelegate(delegate)
function bool EndOnlineGame()

delegate OnEndOnlineGameComplete(bool)

function AddEndOnlineGameCompleteDelegate(delegate)
function ClearEndOnlineGameCompleteDelegate(delegate)
function EOnlineGameState GetOnlineGameState()
function bool RegisterForArbitration()

delegate OnArbitrationRegistrationComplete(bool)

function AddArbitrationRegistrationCompleteDelegate(delegate)

function ClearArbitrationRegistrationCompleteDelegate(delegate)

function array GetArbitratedPlayers()
function AddGamelnviteAcceptedDelegate(byte,delegate)

function ClearGamelnviteAcceptedDelegate(byte,delegate)

delegate OnGamelnviteAccepted(OnlineGameSettings)

function bool AcceptGamelnvite(byte)

function bool RecalculateSkillRating(const out array)

OnlineNewslInterface

function bool ReadGameNews(byte)

delegate OnReadGameNewsCompleted(bool)

function AddReadGameNewsCompletedDelegate(delegate)

function ClearReadGameNewsCompletedDelegate(delegate)

function string GetGameNews(byte)

function bool ReadContentAnnouncements(byte)

delegate OnReadContentAnnouncementsCompleted(bool)

function AddReadContentAnnouncementsCompletedDelegate(delegate)

function ClearReadContentAnnouncementsCompletedDelegate(delegate)

function string GetContentAnnouncements(byte)

OnlinePlayerinterface

delegate OnLoginChange()

delegate OnLoginCancelled()

delegate OnMutingChange()

delegate OnFriendsChange()

function bool ShowLoginUI(optional bool)

function bool Login(byte,string,string,optional bool)

function bool AutoLogin()

delegate OnLoginFailed(byte,EOnlineServerConnectionStatus)

function AddLoginFailedDelegate(byte,delegate)

function ClearLoginFailedDelegate(byte,delegate)

function bool Logout(byte)

delegate OnLogoutCompleted(bool)

function AddLogoutCompletedDelegate(byte,delegate)

function ClearLogoutCompletedDelegate(byte,delegate)

function ELoginStatus GetLoginStatus(byte)

function bool GetUniquePlayerId(byte,out UniqueNetlId)

function string GetPlayerNickname(byte)

function EFeaturePrivilegeLevel CanPlayOnline(byte)

function EFeaturePrivilegeLevel CanCommunicate(byte)

function EFeaturePrivilegeLevel CanDownloadUserContent(byte)
function EFeaturePrivilegeLevel CanPurchaseContent(byte)
function EFeaturePrivilegeLevel CanViewPlayerProfiles(byte)
function EFeaturePrivilegeLevel CanShowPresencelnformation(byte)
function bool IsFriend(byte,UniqueNetld)

function bool AreAnyFriends(byte,out array)

function bool IsMuted(byte,UniqueNetId)

function bool ShowFriendsUI(byte)

function AddLoginChangeDelegate(delegate,optional byte)
function ClearLoginChangeDelegate(delegate,optional byte)
function AddLoginCancelledDelegate(delegate)

function ClearLoginCancelledDelegate(delegate)

function AddMutingChangeDelegate(delegate)

function ClearMutingChangeDelegate(delegate)

function AddFriendsChangeDelegate(byte,delegate)

function ClearFriendsChangeDelegate(byte,delegate)

function bool ReadProfileSettings(byte,OnlineProfileSettings)
delegate OnReadProfileSettingsComplete(bool)

function AddReadProfileSettingsCompleteDelegate(byte,delegate)
function ClearReadProfileSettingsCompleteDelegate(byte,delegate)
function OnlineProfileSettings GetProfileSettings(byte)

function bool WriteProfileSettings(byte,OnlineProfileSettings)
delegate OnWriteProfileSettingsComplete(bool)

function AddWriteProfileSettingsCompleteDelegate(byte,delegate)
function ClearWriteProfileSettingsCompleteDelegate(byte,delegate)
function bool ReadFriendsList(byte,optional int,optional int)
delegate OnReadFriendsComplete(bool)

function AddReadFriendsCompleteDelegate(byte,delegate)

function ClearReadFriendsCompleteDelegate(byte,delegate)

function EOnlineEnumerationReadState GetFriendsList(byte,out array,optional
int,optional int)
function SetOnlineStatus(byte,int,const out array,const out array)

function bool ShowKeyboardUI(byte,string,string,optional bool,optional
bool,optional string,optional int)

function AddKeyboardInputDoneDelegate(delegate)

function ClearKeyboardInputDoneDelegate(delegate)

function string GetKeyboardInputResults(out byte)

delegate OnKeyboardInputComplete(bool)

function bool AddFriend(byte,UniqueNetld,optional string)
function bool AddFriendByName(byte,string,optional string)
delegate OnAddFriendByNameComplete(bool)

function AddAddFriendByNameCompleteDelegate(byte,delegate)
function ClearAddFriendByNameCompleteDelegate(byte,delegate)
function bool AcceptFriendInvite(byte,UniqueNetld)

function bool DenyFriendInvite(byte,UniqueNetld)

function bool RemoveFriend(byte,UniqueNetId)

delegate OnFriendInviteReceived(byte,UniqueNetld,string,string)
function AddFriendInviteReceivedDelegate(byte,delegate)
function ClearFriendInviteReceivedDelegate(byte,delegate)

function bool SendMessageToFriend(byte,UniqueNetld,string)

function bool SendGamelnviteToFriend(byte,UniqueNetld,optional string)
function bool SendGamelnviteToFriends(byte,array,optional string)
delegate OnReceivedGamelnvite(byte,string)

function AddReceivedGamelnviteDelegate(byte,delegate)

function ClearReceivedGamelnviteDelegate(byte,delegate)

function bool JoinFriendGame(byte,UniqueNetlId)

delegate OnJoinFriendGameComplete(bool)

function AddJoinFriendGameCompleteDelegate(delegate)

function ClearJoinFriendGameCompleteDelegate(delegate)

function GetFriendMessages(byte,out array)

delegate OnFriendMessageReceived(byte,UniqueNetld,string,string)
function AddFriendMessageReceivedDelegate(byte,delegate)
function ClearFriendMessageReceivedDelegate(byte,delegate)

function bool DeleteMessage(byte,int)

OnlinePlayerinterfaceEx

function bool ShowFeedbackUI(byte,UniqueNetld)
function bool ShowGamerCardUI(byte,UniqueNetId)
function bool ShowMessagesUI(byte)

function bool ShowAchievementsUI(byte)

function bool ShowInviteUI(byte,optional string)

function bool ShowContentMarketplaceUI(byte)

function bool ShowMembershipMarketplaceUI(byte)
function bool ShowDeviceSelectionUI(byte,int,bool)
function AddDeviceSelectionDoneDelegate(byte,delegate)
function ClearDeviceSelectionDoneDelegate(byte,delegate)
function int GetDeviceSelectionResults(byte,out string)
delegate OnDeviceSelectionComplete(bool)

function bool IsDeviceValid(int)

function bool UnlockAchievement(byte,int)

function AddUnlockAchievementCompleteDelegate(byte,delegate)
function ClearUnlockAchievementCompleteDelegate(byte,delegate)
delegate OnUnlockAchievementComplete(bool)

function bool UnlockGamerPicture(byte,int)

delegate OnProfileDataChanged()

function AddProfileDataChangedDelegate(byte,delegate)

function ClearProfileDataChangedDelegate(byte,delegate)

function bool ShowFriendsInviteUI(byte,UniqueNetld)

function bool ShowPlayersUI(byte)

OnlineStatsinterface

function bool ReadOnlineStats(const out array,OnlineStatsRead)
function bool ReadOnlineStatsForFriends(byte,OnlineStatsRead)

function bool ReadOnlineStatsByRank(OnlineStatsRead,optional int,optional int)
function bool ReadOnlineStatsByRankAroundPlayer(byte,OnlineStatsRead,optional
int)

function AddReadOnlineStatsCompleteDelegate(delegate)

function ClearReadOnlineStatsCompleteDelegate(delegate)

delegate OnReadOnlineStatsComplete(bool)

function FreeStats(OnlineStatsRead)

function bool WriteOnlineStats(UniqueNetld,OnlineStatsWrite)

function bool FlushOnlineStats()

delegate OnFlushOnlineStatsComplete(bool)

function AddFlushOnlineStatsCompleteDelegate(delegate)

function ClearFlushOnlineStatsCompleteDelegate(delegate)

function bool WriteOnlinePlayerScores(const out array)

function string GetHostStatGuid()

function bool RegisterHostStatGuid(const out string)

delegate OnRegisterHostStatGuidComplete(bool)

function AddRegisterHostStatGuidCompleteDelegate(delegate)

function ClearRegisterHostStatGuidCompleteDelegateDelegate(delegate)

function string GetClientStatGuid()

function bool RegisterStatGuid(UniqueNetlId,const out string)

OnlineSystemInterface |

function bool HasLinkConnection();

delegate OnLinkStatusChange(bool)

function AddLinkStatusChangeDelegate(delegate)

function ClearLinkStatusChangeDelegate(delegate)

delegate OnExternalUIChange(bool)

function AddExternalUIChangeDelegate(delegate)

function ClearExternalUIChangeDelegate(delegate)

function ENetworkNotificationPosition GetNetworkNotificationPosition()

function SetNetworkNotificationPosition(ENetworkNotificationPosition)

delegate OnControllerChange(int,bool)

function AddControllerChangeDelegate(delegate)

function ClearControllerChangeDelegate(delegate)

function bool IsControllerConnected(int)

delegate OnConnectionStatusChange(EOnlineServerConnectionStatus)

function AddConnectionStatusChangeDelegate(delegate)

function ClearConnectionStatusChangeDelegate(delegate)

function ENATType GetNATType()

delegate OnStorageDeviceChange()

function AddStorageDeviceChangeDelegate(delegate)

function ClearStorageDeviceChangeDelegate(delegate)

OnlineVoicelnterface

function bool RegisterLocalTalker(byte)

function bool UnregisterLocalTalker(byte)

function bool RegisterRemoteTalker(UniqueNetId)

function bool UnregisterRemoteTalker(UniqueNetId)
function bool IsLocalPlayerTalking(byte)

function bool IsRemotePlayerTalking(UniqueNetId)
function bool IsHeadsetPresent(byte)

function bool SetRemoteTalkerPriority(byte,UniqueNetld,int)
function bool MuteRemoteTalker(byte,UniqueNetld)
function bool UnmuteRemoteTalker(byte,UniqueNetld)
delegate OnPlayerTalking(UniqueNetId)

function AddPlayerTalkingDelegate(delegate)

function ClearPlayerTalkingDelegate(delegate)

function StartNetworkedVoice(byte)

function StopNetworkedVoice(byte)

function bool StartSpeechRecognition(byte)

function bool StopSpeechRecognition(byte)

function bool GetRecognitionResults(byte,out array)
delegate OnRecognitionComplete()

function AddRecognitionCompleteDelegate(byte,delegate)
function ClearRecognitionCompleteDelegate(byte,delegate)
function bool SelectVocabulary(byte,int)

function bool SetSpeechRecognitionObject(byte,SpeechRecognition)
function bool MuteAll(byte,bool)

function bool UnmuteAll(byte)

UlDataStoreSubscriber

native function SetDataStoreBinding(string, optional int)

native function string GetDataStoreBinding(optional int) const

native function bool RefreshSubscriberValue(optional int)

native function NotifyDataStoreValueUpdated(UIDataStore, bool, name,
UIDataProvider, int)

native function GetBoundDataStores(out array)

native function ClearBoundDataStores()

UlDataStorePublisher extends UlDataStoreSubscriber
native function bool SaveSubscriberValue(out array, optional int)

UlEventContainer |

native final function GetUIEvents(out array, optional class)

native final function bool AddSequenceObject(SequenceObject, optional bool)

native final function RemoveSequenceObject(SequenceObject)

native final function RemoveSequenceObjects(array)

UlListElementCellProvider
const UnknownCellDataFieldName = 'NAME_None';

UlStringRenderer |
native final virtual function SetTextAlignment(EUIAlignment, EUIAlignment) ‘

UIStyleResolver

native function name GetStyleResolverTag()

native function bool SetStyleResolverTag(name)

native function bool NotifyResolveStyle(UISkin, bool, optional UIState, const
optional name)

SUMMARY

We have now taken another step out of the shadows and learned about
interfaces, within UnrealScript. We have seen how they are defined, their
purpose and their quirks within this environment and within the two tutorials we
worked on two tutorial sets to implement them. Although they are really a very
simple concept they can and should play an important role in your development
project.

Interfaces allow us to rely upon the compiler to control our implementation
between classes. They are a template through which we can depend upon a
certain group of functions being provided, while their implementation may
change. Interfaces may contain functions, delegates, constants or structures, in
definition form, and nothing more.

