CHAPTER 3
CLASSES IN UNREAL

CHAPTER 3 — CLASSES IN UNREAL

o

o

o

o

3.1 OVERVIEW
3.2 NATIVE VS NON-NATIVE
3.3 CLASS DECLARATION
= EXTENDS KEYWORD
TUTORIAL 3.1 YOUR FIRST CLASS DECLARATION
3.4 CLASS SPECIFIERS
= NATIVE(PACKAGENAME)
= NATIVEREPLICATION
= DEPENDSON(CLASSNAME[,CLASSNAME,...])
= ABSTRACT
= DEPRECATED
= TRANSIENT
= NONTRANSIENT
= CONFIG(ININAME)
= Engine
= Editor
= Game
= Input
= PEROBJECTCONFIG
= EDITINLINENEW
= NONEDITINLINENEW
= PLACEABLE
TUTORIAL 3.2 MAKING A PLACEABLE ACTOR
= NOTPLACEABLE
= HIDEDROPDOWN
= HIDECATEGORIES(CATEGORY[,CATEGORY,...])
TUTORIAL 3.3 HIDING PROPERTY CATEGORIES
= SHOWCATEGORIES(CATEGORY[,CATEGORY,...])
= AUTOEXPANDCATEGORIES(CATEGORY[,CATEGORY,...])
TUTORIAL 3.4 AUTOMATICALLY EXPANDING CATEGORIES
= COLLAPSECATEGORIES
= DONTCOLLAPSECATEGORIES
= WITHIN CLASSNAME
= INHERITS(CLASSNAME[,CLASSNAME,...])
= IMPLEMENTS(CLASSNAME[,CLASSNAME,...])
= NOEXPORT
3.5 SUMMARY
Supplemental Files

As we jump in and begin looking at the UnrealScript language, we will begin by
taking a look at the implementation of classes within UnrealScript. More
specifically, you will be given an overview of what a class in UnrealScript
represents and how to declare a class along with explanations of the various

keywords that can be used when declaring classes which determine how that
particular class is treated.

3.1 OVERVIEW

Classes are basically templates that specify a set of properties, abilities, and
behaviors which can either be extended to create new classes which inherit those
properties, abilities, and behaviors or instanced to create objects for use in game
which will each have their own unique values for those properties and act
independently of each other instance. What does this mean with regards to
Unreal and UnrealScript? In essence, each class created in UnrealScript is a type
of game item that may be used to create objects for use within the game. This
could range from items which are readily identifiable and visible to the player to
items which are merely used by other items as helpers behind the scenes. Some
examples might be weapons and vehicles or the PlayerReplicationInfo class
which is used to hold the values of the player's important properties for purposes
of replicating them across the network.

3.2 NATIVE VS NON-NATIVE

At the most basic level, there are two types of classes in UnrealScript: native and
non-native. A native class is simply a class which has native code, or code
written in the native language of the engine which in this case would be C++.
This is not to say that native classes do not have code written in UnrealScript as
well, just that they do have C++ code associated with them. Many of the lower
level classes present in the game are native classes as they have quite a bit of
complex functionality which benefits from the speed of native code. Non-native
classes are written exclusively in UnrealScript. Since all classes must at the very
least extend from Object which is a native class, these still have native code
associated with them through inheritance, but they have no distinct native code
of their own. All of the classes you will write will be non-native since creating
native classes requires rebuilding the source code for the engine.

3.3 CLASS DECLARATION

In order to create a new class in UnrealScript, a new UnrealScript file must be
created which contains a class declaration. Each UnrealScript file can contain
only one class declaration and, therefore, represents a single class within Unreal.
The class declaration is the first line of the script, comments notwithstanding,
and is where, at minimum, the name of the class to be created and the name of
the class to extend from, or parent class, are specified. The declaration can also
contain one or more of the keywords, or Class Specifiers, which will be discussed
in the next section. Below is the generic form of a class declaration:

cl ass O assNanme extends Parent d assNane;

Using this as a template, we could declare a new vehicle class named
PickupTruck that inherits functionality from the base Vehicle class like so:

cl ass Pi ckupTruck extends Vehi cl e;

Note: It is important to note that the name of the class and the name of the
UnrealScript (.uc) file it is within must be identical or the compiling process will
fail.

EXTENDS KEYWORD

You may have noticed the use of the Extends keyword in the above class
declaration examples. This keyword in essence means “inherits from”. All classes
must extend, or inherit, from another class. The only exception to this is the
Object class as it is the base class of all other classes within UnrealScript. When
one class inherits from another, it contains all the variables, functions, states,
etc. of the class it inherits from. When creating classes in UnrealScript, you will
usually be extending from Actor or one of its subclasses, although there may be
isolated cases where you might extend from Object.

TUTORIAL 3.1 YOUR FIRST CLASS DECLARATION

The tutorials in this chapter will be fairly simple in that you will simply be writing
class declarations. These classes will not actually do anything at this point as we
are concentrating on creating classes and how their declarations affect their
appearance and behavior. In this first tutorial, you will be creating a class which
extends from the Actor class. Once created, you will compile the new script and
then open UnrealEd to see that the new class is now recognized by the engine
and displayed in the Actor Classes Browser.

1. Open ConTEXT if it is not already open.

2. Create a new file by choosing New from the File menu or pressing the New
File button in the toolbar.

% ConTEXT

File View Project Tools Options Wir

NECEEIECIE Y
bt

FIGURE 3.1 - The New File button.

3. Select the UnrealScript highlighter you have installed using the Select Active
Highlighter dropdown.

[conmexT - [Edt1] ~lolx]|

CHeEdthwmatProxctYodsOomw’ndowHeb - 8 x
T IR PP NPT NP Y oy —
=] Eant | HTML |
WM. 5 .10 .15 . 2 . 25 .+ 30 . 35 . 40 . 45 . |InnoSetpSoipt .70 . 75 . B0 . B . 90 . 95 |
T T 0 0 T 0 O 0 O ”I"'Java Al Ll O A
gl JavaScrpt
Gbject Pascal
Perl
FHP
Python
SQL
Tel/Tk
Text fles
Urveascript
Visual Basic
a6 Assembier
XML -
Lel | 2
Lnt. Coll Inset | Sel Nomal DoS

FIGURE 3.2 - The Select Active Highlighter dropdown menu.

4. On the first line of the new script file, type the following text:
cl ass Exanpl eCl ass extends actor;

That's it! That completes the class declaration and technically constitutes the
creation of an entirely new class.

5. Save the file in the ..\Src\MasteringUnrealScript\Classes directory created in
the previous chapter. Name the new script file ExampleClass.uc to match the
name of the new class.

6. Run the Make commandlet to compile the scripts. As in the previous chapter,
you can do this using the method of your choice. Once the scripts have been
successfully compiled, launch UnrealEd.

7. Open the Generic Browser if it is not already open and switch to the Actor
Classes tab. You should notice that ExampleClass is not one of the classes listed
in the class hierarchy tree. This is because the Placeable Classes Only? option is
toggled on and the ExampleClass class is not placeable.

Wacorcasses SETEY

fe Docking

Gerarie | Acor Classes | Greups | Lovisl | Rofienced si<ats | Primitve Stats | Dymamic Shadow Stats | Scone Manager | Log |
¥ Usa oo’ is Parent?

meucmonw[\'

Actor

Camerafctor
Decalactor

4 Emlitter
RackAttractonr
RockTestActor
EAssel
LensHareSource.
Materfallnstancefctor
HNote

5 Fanve
PhysAnimTestactor
Ri_CylindricalForcesctor
RE_UnelmpulseActor
RE_RadialforecActor
RE_RadiallmpulseActor
RB_Thruster

& SkeletalMeshhctor
Spend Troeae tor
Subobjec tTestActor
Test0OZ2_Metalats =

+ TestiaceableActor

« Trigger
UTBreakablePowerCables

& _ambient_Loops -
A_ambient_Nonloops

4_Annourcer_Reward

8 _announcer_Reward_Cua

4 _srnourcer_Stats

4_Character_Bishop

ih_Charatter_BosyImpacts

t_Character_ComupiEn igma

Py =

FIGURE 3.3 - The Placeable Classes Only? option is checked.

Uncheck the Placeable Classes Only? option and you should now see the new
ExampleClass class listed in the hierarchy.

W octor Classes

=1E]
Fie Docking
Gareric Actor Classes | oroups | Loval | Ruferimced sssets | Pririt Stats | Dynami: Shadow Stats | Seere banagor [Log |
I+ Usa ‘cew” hs Parent?
™ Flacnabia Clasces Only

= Actor
% B

PhysAnimTestActor

Buiator ngfornatSer pt ExampleCling

b_Ambient_Loops -
[_ambient_Nonloops

b _irouncer_Reward

i _snnouncer_Reward_Cua

A _frnouncer_Stanms

h_Character_Bishop

4_Character_BodyImpacts

4_Character_CorrupiEnigma

[4_Character_CormupdEnigra_Cue

6_Character_Footsteps:

6_Character_GRemale

h_Character_[GRemales_Cus

pihciahehdly S

FIGURE 3.4 - The ExampleClass class is displayed in the hierarchy once
the option is unchecked.

8. We can see that this is the case by attempting to place an instance of the
ExampleClass class in a map. Open the DM_TestRoom.ut3 map provided on the
DVD. Select ExampleClass in the Actor Classes Browser and right-click on the
floor of the room in the perspective viewport. If this class were placeable, there
would be an option to Add ExampleClass here from the context menu. You can
clearly see this option is not present demonstrating that this class is not
placeable.

B M- TestRoom - Uneeal Editor for Unreal Tourmament 3 (UT3)
Fe Edt Vew Bnsh Buld Took Hep

B T _I=ix

Dlzl-@e] <]) BIFF plal e <) A e) BSIK1S.] [Fropsgeton][] L) 5]
f:if@- 2.l geoeoos| [P TIFIS| Of0= B | oTeioom

Move Seected ACkors To Curment Level
Select Levels

Select Only Thesa Lavels

Doggiont Levels

Fivot A
Traeform \f

Sat Detal Mode »

Crgar ¥
Fatygors ¢
£sS6 »
Sobdty *
Add Volume k
Selact '
Select a Actor

Ak v
Ao Camerss

Toogk Lock Locaborns

SNED Vigw 10 ACtor

Select Manching Static Meshes {Ths Class)
Select Matching Static Meshes (4 Classes)
Safart Unredismet Referenced Actors
Sadect Lireakisrnet Unniferanced Actors

Blocking Volme Creation %
Save Brush A Colision

Srap Tor Gridd

Convart toy Static Mesh

Convert i
Creats Pratab
Maberiss... "

ShowHida Actors i
A Recent
Add Actir ¥

Play Fron Here (T spectates)

I] 2 Actors Selected - T T s - G - g | =
FIGURE 3.5 - There is no option to add an instance of the ExampleClass
class.

You now have seen how to declare a class which is part of the Unreal class
hierarchy. This class is in essence nothing more than a copy of the Actor class
and cannot be placed in a map. In the next tutorial, you will expand on what you
have learned here in order to create a class which can be placed in a level, a
very basic yet extremely important concept of scripting in the Unreal Engine.
Without being able to place items in a map, the designer’s job would basically be
impossible.

<< << End of Tutorial >>>>

3.4 CLASS SPECIFIERS

Class Specifiers are keywords which tell the compiler and/or the engine itself certain aspects about the
class. Each of these keywords is described below:

NATIVE(PACKAGENAME)

The Native specifier labels the class as having native code associated with it.
What this means is that the engine will look for a C++ declaration and
implementation of the class. If this does not exist, an error will occur. Native
classes have the distinction of being the only classes which can declare native
functions and implement native interfaces. This may not make a great deal of
sense at this point as we have not discussed functions and interfaces, but they
will be discussed in detail later on at which time the previous statement should
become clear.

The (PackageName) refers to the name of the package in which the class
resides. The compiler uses this name to auto-generate a declaration for the class
within a C++ header file whose name would be the PackageName +Classes.h. In
other words, if the Package name was specified as follows:

Cl ass NativeCd ass extends Actor Native(MasteringUnreal);

The native declaration of this class would be placed inside a
MasteringUnrealClasses.h file.

NATIVEREPLICATION

The NativeReplication specifier only has meaning inside of native classes and
indicates that the values of the variables belonging to the class are replicated
through native code.

DEPENDSON(CLASSNAME[,CLASSNAME,...])

The DependsOn specifier is used to determine the order of compiling when
classes have dependencies which require certain classes to be compiled before
others within the same package. The class, or classes, listed inside the
parentheses will be compiled before the class the specifier is within. This can be
useful when the current class needs to access a struct or enumeration that is
declared in another class. If the current class is compiled first, the compiler does

not know the struct or enumeration exists and will throw an error. By adding the
DependsOn specifier, the other class is ensured to be compiled first and compiler
will know about the struct or enumeration.

ABSTRACT

The Abstract specifier tells the engine that the class is not allowed to be placed in
a level or instanced in any way. It is used for classes which are meant to be
bases for a wide range of other classes, but have no direct use in a level inside
the game themselves. Because of the object-oriented nature of Unreal, it is
completely possible, and actually desirable from an extensibility perspective, that
some classes will not actually be used in the game themselves. These classes will
serve as the basis for several other classes which all have certain common
characteristics. To illustrate this point, imagine you want to add some vehicles to
your game. All vehicles have certain things in common, such as they move, they
probably have weapons, they may have a driver, etc. Generic code can be
incorporated into a single base Vehicle class to handle the movement of vehicles,
the usage of weapons, and the placement of the driver. This base Vehicle class
would use the Abstract specifier since, on its own, it is not tru ly functional as it
most likely has no mesh or actual weapons assigned to it and should never be
used in the game. All the individual vehicles which extend from the Vehicle class
would have meshes and weapons specific to each vehicle assigned in their own
classes and these would then be used in the game.

DEPRECATED

The Deprecated specifier is used to declare a class as no longer being used. This
is not a keyword that would be used when first creating a class by any means.
There will be times when a class is no longer being used in favor of another class
or method of performing the desired function. When this occurs, the old class
declaration will be changed to use the Deprecated specifier. Once recompiled,
any instances of this class used within the game will continue to be loaded inside
of the editor, but will cause a warning to be shown and will no longer be allowed
to be saved. This will force the designers to replace the existing class with the
new class. All classes which extend from a deprecated class will inherit the
Deprecated specifier and will be considered deprecated as well.

TRANSIENT

The Transient specifier prevents the class from ever being saved to disk. It is
used with classes which should not be saved when saving in-game progress or at
any other time. This keyword will be inherited by any child classes of this class.

NONTRANSIENT

The NonTransient specifier overrides the Transient keyword when inherited from
a parent class allowing this class to be saved to disk.

CONFIG(ININAME)

The Config specifier declares that any variables within this class declared as
Config or GlobalConfig will be written out to an .ini file matching the name
specified. The values of these variables is therefore stored when the game exits
and will be read in as the starting values when the game begins.

As an example, take the following class snippet:

cl ass MyScri pt extends MyParent Script Config(MConfig);
Var Config Int Score;
Var Config String Nane;

This will result in a MyConfig.ini file being created which would have lines similar
to the following contained within it:

Score=5
Name=Gor ge

Of course, the values shown here are made up. The actual values would depend
on what happened during the game and what the Name variable represented.
The next time the game is run these values would be read in and used as the
values for the Score and Name variables respectively.

This keyword is inherited by any class which extends from the current class and
cannot be negated. The name of the .ini file to use can be overridden by child
classes, however, by redeclaring the Config specifier with a new IniName. This

means planning must accompany the use of the Config specifier as you could
potentially end up with many unnecessary variables being written to files.

There are also a few reserved names that can be used as the IniName to cause
the variables and their values to be written to certain existing .ini files. These are
as follows:

Engine

This name will cause the values of the variables of this class to be written to the
[GameName]Engine.ini file, where [GameName] represents the name of the
game. In the case of Unreal Tournament 3, this would be the UTEngine.ini file.

Editor

This name will cause the values of the variables of this class to be written to the
[GameName]Editor.ini file, where [GameName] represents the name of the
game. In the case of Unreal Tournament 3, this would be the UTEditor.ini file.

Game

This name will cause the values of the variables of this class to be written to the
[GameName]Game.ini file, where [GameName] represents the name of the
game. In the case of Unreal Tournament 3, this would be the UTGame.ini file.

Input

This name will cause the values of the variables of this class to be written to the
[GameName]lnput.ini file, where [GameName] represents the name of the
game. In the case of Unreal Tournament 3, this would be the UTInput.ini file.

PEROBJECTCONFIG

The PerObjectConfig specifier is similar to the Config keyword in that it declares

that the class will be using an .ini file to store values. In this case, the values for
individual instances of the class are stored in separate sections designated by a

header as follows:

[Obj ect Nane Cl assNane]

ObjectName represents the name to be given to the instance of the class and
ClassName represents the name of the class to instance. Under this heading will
be a listing of the Config variables contained within the class and the values for
that specific instance of the class. This information is used to initialize several
instances of a class, such as for populating a list in a UIScene. This specifier is
inherited by any classes extending from the current class.

EDITINLINENEW

The EditInlineNew specifier declares that this class may have a new instance
created directly from within the Property Window inside of UnrealEd. This can be
used in base abstract classes to allow the designer to choose the type of object
to use inside of UnrealEd for certain properties. An example would be inside of
the Actor Factory Kismet action. The designer is allowed to choose which type of
ActorFactory to use based upon which type of object is desired to be spawned.
The property in the action's class is of type ActorFactory, which by itself is not
really meaningful as it is an abstract class with no specific functionality. It is
extended by several other classes which do have specific functionality. Since
ActorFactory is declared as EditInlineNew and this keyword is inherited by all
child classes, the property can be set within UnrealEd to any of these child class
types making the action very versatile.

I Unrealismet: Main_Sequence =15 %
Window

4lR| = TN [= A% K]

ActorFactonyAl
ActoeFactoryAmeRntSound
ActorFactoryAmbkentScundSimpls

ACTOFHCIO Y AT et e
AetueEastory Caverl ik
ActorFactornyEmaTe:

o ActorFactorylensflre

ActorFactoryLight

! Actorractonytaver

i R ActorFactoryPatriiocs
S ActorFactoryPhyscsasset

ActorFactoryFlayer Stat

ActeeFactoryRigdBocty

ActorFactonySkeletahiedh

ActeeFactonyStatcMesh

UTActorFactonyAl

UTACtorFactoryiover
UTActorFactonyFickup
UTACtAFactonyvace

ActorFac T

: i & GaMEACTOFSIONVBrask e 1]

| boutputb CammertTosen (] UTactorEactonyTeamStatichesh

| bSupressaumComment] UTACtorFactoryUTKACtor
Nare

* lﬂgﬁ a _ﬂ

£

FIGURE 3.6 - Creating a new ActorFactory object in the Actor Factory
sequence action.

NONEDITINLINENEW

The NotEditInlineNew specifier removes the inherited EditInlineNew keyword
from a class. This will only have an effect if the parent class was declared as
EditInlineNew.

PLACEABLE

The Placeable specifier declares that the class has the ability to be placed within
a map, UIScene, or Kismet sequence inside of UnrealEd. Any game items which
the level designer should have access to and be able to use directly in UnrealEd
should have this keyword designated. This specifier is inherited by child classes.

TUTORIAL 3.2 MAKING A PLACEABLE ACTOR

In this tutorial, you will create a new class that extends the ExampleClass
created in the previous tutorial. This class, however, will be able to be placed in
a map inside of UnrealEd.

1. Open ConTEXT if it is not already open.

2. Once again, create a new file by choosing New from the File menu or pressing
the New File button in the toolbar.

3. Select the UnrealScript highlighter you have installed using the Select Active
Highlighter dropdown.

4. On the first line of the new script file, place the following code:
cl ass Exanpl eCl ass_Pl aceabl e ext ends Exanpl ed ass

Notice this time, there is no semicolon ending the line. This is because the
declaration is not complete. We are going to use a specifier to determine some
specific behavior we would like this class to have.

5. Press the Enter key to go to the next line and then press the Tab key to
indent the line. Add the code below:

pl aceabl e;

This will declare this new class as being allowed to be placed in a map in
UnrealEd whereas its parent class, ExampleClass, was not placeable. The final
script should consist of the following text:

cl ass Exanpl eCl ass_Pl aceabl e ext ends Exanpl ed ass
pl aceabl e;

6. Save this file within the ..\Src\MasteringUnrealScript\Classes directory with
the name ExampleClass_Placeable.uc to match the class name.

7. Run the Make commandlet to compile the scripts. As in the previous chapter,
you can do this using the method of your choice. Once the scripts have been
successfully compiled, launch UnrealEd.

8. Open the Generic Browser if it is not already open and switch to the Actor
Classes tab. You should now see the ExampleClass class listed in the hierarchy
even with the Placeable Classes Only? option checked since it now has a subclass
that is placeable, signified by the plus sign beside it.

B Actor Classes
e Docking
Geraric| Actor Classes | Groups | Loval | Referenced assts | primitive Stats | Dynamic Shadow Stats | S2ene tanager [Log |
I+ Usa Ao’ Az Parent?

memw[}

= Actor -

5B
CameraActor
= ComponentTestaciorliass
Dwcalactor
+ Emitter
FlockAttractor
B Flock Test_Spawnes
PlackTestActor
&-Info
Efsmet
- K vpeint
LensflareSource
1
MaterialinstanceActor
B Navigaborfont
Note
% Pawn
PhysAnimTest Actor
RBE_CylindricalForceacton
RE_Linelpilsaictor

RE_Radialforesactor
RB_RadialimpulseActor

Statiovieshaciorbase

SubobjectTestActor

TestolFa_Motabata
@ TestMaceableactor
Trigger

MutoringrmalSer ptExampleCins

4_ambient_|oops -
_arbient_Monloops

4_trnoiurcer_Reward

6_trourcer_Rewand_Cue

A_Announcer _Stals

_Cheracter_Bishop

6, _Character Bodyimpacts:

6,_Character_CormuptEnigma

&_Character_ComupEnigrma_Cue

4 Character Footsteps:

4._Character_IcFemals

&,_Character_IGFemals_Cua

& Froeartoe hecie =

FIGURE 3.7 - The ExampleClass class is displayed with the Placeable
Classes Only? option checked.

Click on the plus sign to display its subclasses and you should now see the
ExampleClass_Placeable class you just created displayed in bold meaning that is
can be placed in a map.

W Actor Classes .-:-[ii....l-.%.i
e Dockig

Gereric Aftor Classes | Greups | Laval | Referenced sssits | Primitive Stats | Ojram Shadow Stats | Score barager | Log |
I+ Usa Yhrm As Parent?

[+ Placaabis Classes Onk?

o y
ExampleCiass_Placeable %

HockAttractor

s Flock Test_Spewres
RockTestActar

& Info
KAssal

& vaypont

LensFareSource

MaterlalinstanceArtor
& NavigatorPont
Kote
& Fawr
Physanimlestictor
- Fil_Cons¥antacicr
Ri_CylrdricalForceActor
RE_Lineimpulsedctor
RB_RadialForcesctor
RE_Radialimpuilsesc toe
RE_Thruster
B StereCaiturmteier
+ Skelatalveshac tor =
SpeadTresAC b
o Stk o e
SubobjectTestActor
Test00Z3_MetaData
+ TestMaceabdeActor

asiingL i nalSer pLE A ploCkiss_Flachabil

&_Ambiient_Loops s
A _Amik

&_Anrourcer_Rewand

A _tnnounces_Reward_Cus

A_Announcer Stafls

& _Character_Bishop

f._Character_Bodylmpacts

& _Charatter_CormapiEnigra

A_Character_ComupEnigrma_Cue

A_CharaCter _Fontstens

&_Character IGRemals

&_Charatter_IGRemalke_Cua

& Mharartes Wiz ;I

FIGURE 3.8 - The ExampleClass_placeable class is listed under
ExampleClass in the hierarchy.

9. Just to make sure everything worked properly; let’s place an instance of the
ExampleClass_Placeable class in a map. Open the DM_TestRoom.ut3 map
provided on the DVD. Select ExampleClass_Placeable in the Actor Classes
Browser and right-click on the floor of the room in the perspective viewport.
Choose Add ExampleClass_Placeable here from the context menu. You have now
successfully created an instance in the map although it will have no visual
component other than the presence of the transformation widget when selected.

B 041 TesiRoom - Unreal Editor for Unreal Tourmament 3 (UT3) I - 5] %
Fie Edt Vew Bnsh BUed Tods Hep
Dllue) lo] ——) BIFF ol s =] 8] 0 Soia 8 Ki 87 Bl 9L KIS forommmw 5] L)]

L. eeoeealael [P TIFIS| Al =] # ~] 414 .5] O/ B

|
ml @ cut
& |3 Copy

= Paste
@ i_‘) Paste: Hera
= StancMeshitclor Properties (1 Sebscted)
E}. ﬂ ST Genenc Browser
< Make Curent Lavel: DM-TestRcom
% o v Sadacbed Actort To Curment Level
il Select Levels
EI Seect Oty These Levels
= Desloct Laves

d |’ Pheat
i Trarsform
. L’. Sat Datal Mode

[Algn
- @- Kign Cameras

Togake Lock, Locstions

b [Sniap View 1o Actor
B | & Select & StavcMeshuchon

Sedecl Matching Statc Meshes (T Class)
Sebect Matrhing Stabc Meshes (Al Clsses)
Saisct Unreakismat Referencad Actors
Sefect LinrealEmet Unreferenced Actors

Blockirg Vokame Creation
Save Boush A5 Colison
Cormvert

Create Archetype
Cregte Frefab

Iateriade,
Show,

A Recent
Add Actor

I | Pocsistont Linol Stateiestilctor_217hio Char Play From Here (Tt spectates) R R e - e = e S
FIGURE 3.9 - An instance of the ExampleClass_Placeable class can be

added to the map.

<<<< End of Tutorial >>>>

NOTPLACEABLE

The NotPlaceable specifier is used to remove the ability of the class to be placed
inside of UnrealEd. This would be used on a class which is the child of a class
declared as Placeable, but which should not be allowed to be placed in UnrealEd.

HIDEDROPDOWN

The HideDropDown specifier makes the class not show up in class-type dropdown
lists within UnrealEd. This type of list might be used to let the designer choose a
type of effect to use for a destructible object, for example. By using the
HideDropDown keyword, a specific class could be prevented from appearing in
that list.

HIDECATEGORIES(CATEGORY[,CATEGORY,...])

The HideCategories specifier allows certain groups, or categories, of properties
for instances of the class to be hidden inside of the Property Window in UnrealEd.
This allows unnecessary properties to be kept from cluttering the Property
Window and getting in the designer's way. This keyword and its hidden
categories are inherited by all child classes.

TUTORIAL 3.3 HIDING PROPERTY CATEGORIES

Now that you have created a new class which can be added as an actor to a
map, we can start to take a look at manipulating how the properties of the class
will be displayed to the designer inside of UnrealEd. In this tutorial, we will be
determining which categories of properties will be displayed to the designer by
hiding certain categories.

1. Open ConTEXT if it is not already open.

2. Once again, create a new file by choosing New from the File menu or pressing
the New File button in the toolbar.

3. Select the UnrealScript highlighter you have installed using the Select Active
Highlighter dropdown.

4. On the first line of the new script file, place the following code:
cl ass Exanpl ed ass_Hi ddenCat egori es ext ends Exanpl eCl ass_Pl aceabl e

As was the case in the previous tutorial, there is no semicolon ending the line
because the declaration is not complete. From this line of the declaration, we can
see that the new class will automatically be placeable in a map because it
extends from ExampleClass_Placeable which was declared as placeable.

5. Press the Enter key to go to the next line and then press the Tab key to
indent the line. Add the code below:

Hi deCat egori es(Movenent)
Hi deCat egori es(Di spl ay) ;

You may be wondering where we get the Movement and Display category names
from. The properties in the Actor Class are split up into several categories by the
way they are declared. Since, this class inherits indirectly from the Actor class, it
contains those properties and the categories as well. We are simply telling
UnrealEd not to display the Movement or Display categories and the properties
contained within them.

The completed script should contain the following text:

cl ass Exanpl ed ass_Hi ddenCat egori es ext ends Exanpl eCl ass_Pl aceabl e
Hi deCat egori es(Movenent)

Hi deCat egori es(Di spl ay) ;

6. Save this file within the ..\Src\MasteringUnrealScript\Classes directory with
the name ExampleClass_HiddenCategories.uc to match the class name.

7. Run the Make commandlet to compile the scripts. As in the previous chapter,
you can do this using the method of your choice. Once the scripts have been
successfully compiled, launch UnrealEd. Open the DM_TestRoom.ut3 map
provided on the DVD.

8. Open the Generic Browser if it is not already open and switch to the Actor
Classes tab. After fully expanding the ExampleClass hierarchy, you should now
see the ExampleClass_HiddenCategories class listed under the
ExampleClass_Placeable class.

W Actor Classes S &'Iﬁ-j

fle Docking

Garorc Adtor Classes | Groups | Lovel | Refirenced Assts | Primitive Stats | Dynamic Shadow Stats | Stern prager | Log |
I+ Uea ‘Armr’ Az Parent?

[+ Placemnbis Classes Only?

= AChor

1 E‘.a;n-eraactnr
Ceitter
T i L—n.s. Placeabln
[ExampleClass_HiddenCateqories B

FockAttrac tor b1

= E

AockTestActor
m-Infa
KEAsser
F Finparl
LensflarnSource
MaterialnstanceActor
Notie
PhysAnsmTest Actor
RE_CyindricalForceAc tor
RE_Linelmpulsefctor
RE_RadialForcefctor

RE_Radialimpulsesebor
RE_Thrister

+ SkeletalVeshActor
SpeediresActor

Subobject TestActor
Testz3_MetaData

Iintor ingUnrpalSo ptEsampleCbss_HeklonCategor g

A_ambient_Loops -
A_i mbient_Nonloops
A_Mprouncer_Reward
b _tnnouncer_Reward_Cue
b_dnnouncer _Siahs
&_CharaCter_Bishop
A_Character _Bodylmpacts
b_Character_CornupiEnigma
A,_Character_ComupEnigma_Cue
A_Cheracter Footsteps
&_Character_[GFemals
Character_GFemale_Cua
;Ll'b- st Jl:il:h 7 ﬂ

FIGURE 3.10 - The ExampleClass_HiddenCategories class is listed un
ExampleClass_Placeable.

9. Select ExampleClass_Placeable in the Actor Classes Browser and right-click on
the floor of the room in the perspective viewport. Choose Add
ExampleClass_Placeable here from the context menu. Press F4 to open the
Properties Window and notice all the categories of properties, especially the
Movement and Display categories.

DISHEIB] ol ——) &IFF blal1] ey <] & 0] Sioie) 6] K B[B] Ol IKIKIS] o =11 2) 5]

il eEoeaaoe P TIFS| Ao =] # ~| 4d.s) O 5

L4
@

|

FEFO &
0(}'5&11‘%”

=)

B G|

&,

e
9|0,

| glwﬁlmnlgxamhﬂlluLP:xmh_u [1.[-'.uJ [1. 0000 [zu-_'a- I‘L.U.l I 16 .Fjﬂi F'jlim'. Fjla|
FIGURE 3.11 - The Properties Window for the ExampleClass_Placeable
actor.

10. Now select ExampleClass_HiddenCategories in the Actor Classes Browser
and right-click on the floor of the room in the perspective viewport. Choose Add
ExampleClass_HiddenCategories here from the context menu. Again, press F4 to
open the Properties Window. You should notice the absence of the Movement
and Display categories even though this class contains the exact same properties
as the ExampleClass_Placeable it extends from. This is due to the use of the
HideCategories specifier in the class declaration.

I - TestRocm - Unreal Editor for Unreal Tourmament 3 (UT3) = &) %]
fle Edt Vew Bnkh EBuld Toos Hep
IS k|) Ll pinln] v <] 8 O $io(e) B K B[P Bl 9L KIKIS] formsmn =101) =)

= &; il gleole ool P TIFis| Aj0=| # ~| 4ds] O B
|

|

{;E}C’:’.@

F8reo s

=\

©

|

El&il

B |9
A

=| Forssstonk Linvnl Examp ke lass._HiklsnCategories 0 oo [ioon [ooe oo jeis - <[AS o E5w e

FIGURE 3.12 - The Properties Window for the
ExampleClass_HiddenCategories actor.

<< << End of Tutorial >>>>

SHOWCATEGORIES(CATEGORY[,CATEGORY,...])

The ShowCategories specifier has the exact opposite effect as the HideCategories
keyword. It causes specific categories which have been hidden through the use
of the HideCategories specifier in a parent class. If no HideCategories specifiers
have been used in any parent classes, this will have no effect as all categories
should be displayed by default.

AUTOEXPANDCATEGORIES(CATEGORY[,CATEGORY,...]
)

The AutoExpandCategories specifier allows certain categories of properties to be
fully expanded by default when viewed in the Property Window in UnrealEd. This
can be useful if the properties inside of a specific category are used quite often
by saving the designer the trouble of constantly expanding the category
manually each time the properties are viewed.

TUTORIAL 3.4 AUTOMATICALLY EXPANDING
CATEGORIES

Continuing with the manipulation of how the properties of the class will be
displayed to the designer inside of UnrealEd, will now be specifying which
categories of properties will be automatically expanded in the Properties Window.

1. Open ConTEXT if it is not already open.

2. Once again, create a new file by choosing New from the File menu or pressing
the New File button in the toolbar.

3. Select the UnrealScript highlighter you have installed using the Select Active
Highlighter dropdown.

4. On the first line of the new script file, place the following code:
cl ass Exanpl el ass_ExpandCat egori es extends Exanpl eCl ass_Pl aceabl e

Again we will extend from the ExampleClass_Placeable class in a similar fashion
to the ExamplEClass_HiddenCategories, but this time we will expand the
Movement and Display categories instead of hiding them.

5. Press the Enter key to go to the next line and then press the Tab key to
indent the line. Add the code below:

Aut oExpandCat egori es(Movenent , Di spl ay) ;

Instead of suing individual specifier statements for each category, we have used
a single specifier statement with multiple categories. Which method you use is
completely personal preference. Since you have seen how to use either method,
we will continue with the single statement method from now on as it is
somewhat quicker to type.

The completed script should contain the following text:

cl ass Exanpl el ass_ExpandCat egori es extends Exanpl eCl ass_Pl aceabl e
Aut oExpandCat egori es(Movenent, Di spl ay) ;

6. Save this file within the ..\Src\MasteringUnrealScript\Classes directory with
the name ExampleClass_ExpandCategories.uc to match the class name.

7. Run the Make commandlet to compile the scripts. As in the previous chapter,
you can do this using the method of your choice. Once the scripts have been
successfully compiled, launch UnrealEd. Open the DM_TestRoom.ut3 map
provided on the DVD.

8. Open the Generic Browser if it is not already open and switch to the Actor
Classes tab. After fully expanding the ExampleClass hierarchy, you should now
see the ExampleClass_ ExpandCategories class listed along with the
ExampleClass_HiddenCategories class under the ExampleClass_Placeable class.

W Actor Classes = E'Ijj
e Doding

Gerare Ator Classes | oo | Lol | Rafirenced Assats | Primitive Stats | Cymaimic Stadow Stats | ‘Scorw banager | Lo |
I+ Usa acee Az Parent?
[v Placasbls Classes Only?

= Achor -
Camerafctor
B CamponertTastas rbate
‘Doecalactor

¥ ! ch
+ Emitter

AockAttractor

5 Flock Test_ Shawher
HockTestactor

2 Info
KAssEl

- Koyt
LensHareSource

o1 it
MateriallnstanceActor

& HavigatirPont
Note

PhysAnamTestActor
RB_CylindricalForceActor
RE_LinelmpulseActor
RE_RadialforoeActor

RE_RadiallmpulseAstor
RE_Thruster

i Srerelaphoraacie

@ Skeletaleshicior
SpeedireeActon
Skativieshis trBass
fectTestActor

b tor ngnrpalSor ipt ExamploC e _ExpardC amoor ea

A_Amhient_| oops -
& _ambient_Nonloops

i _trroancer_Reward

b _dnnouncer_Peard_Cua

& _Announcer _Skafs

i_Characher_Bishop

& _Character_Bodylmpachs

h_Character_ComupitEnigrma

& _Character_CormupiEnigrna_Cue

4 _Character_Footsieps

& _Character_[GFemalk

i_Character_GFemalke_Cua

b Chesrice Rk ﬂ

FIGURE 3.13 - The ExampleClass_ExpandCategories class is listed un
ExampleClass_Placeable.

9. Select ExampleClass_ ExpandCategories in the Actor Classes Browser and
right-click on the floor of the room in the perspective viewport. Choose Add
ExampleClass_ ExpandCategories here from the context menu. Press F4 to open
the Properties Window and notice all the categories of properties, especially the
Movement and Display categories which should be fully expanded making the
properties within these categories visible when the Properties Window is opened.

98 (.1 TestiRoons - el Editor for Unieal Toutriarient 3 (U15) =181
Dlel{Ee) o] S o 5 W e (YT R T TR T T o A e o 4
ﬁi‘ﬁ; 2] selojegaoe] [P TFis| A0 =] 8 ~] 44,s] QG E
| C >
|+
|
LAY
©<
Qe
]
£ ollE o
Fall’ o
ae
e
3%

I | Porsistont Livol ExampieClass_EspancCatoger s 0 foooo [roooa oo [ooo Ris T =llAS 5w
FIGURE 3.14 - The Movement and Display categories are automatically
expanded.

<<<< End of Tutorial >>>>

COLLAPSECATEGORIES

The CollapseCategories specifier causes the Property Window within UnrealEd to
forego the use of categories when displaying the editable variables for this class.
All editable variables will appear in a single list ordered alphabetically. This
keyword will be inherited by classes which are children of this class.

10 vt | RPN T .'-.".'-'! AL
Lriteal Toutranent 3 (T3 ST

) Lfr+oa)a]fwa <] a0 2ic]e) @ K mlP E] @ %K]6] [wrropsgnon <0 1) 3]
.| ER0je W3e(®] [P YIE[S] A0 =] 3 ~| Aa,s| Cje &

Hl_l,lﬁ_l_,.l Hles)

1
=1
%
@45 s
f Momi
(20 e
= bCollideComple: =
oo .
o bEetug L1
E,O | bedshoukiznan |
El | Erlardatrach =
| bien o
- | bHidened]
| bHikdenEdGroup L]
a |! | bignoreBasefintation =
i’ L’ | blocklecation l
- BlockR gkEindy 1}
- biaEreroachChodk @
-[@ bPatCallding (i
Pyl eBodyunCfwer ki]
- bshadowParented O
¥ CollsionComponent ons
E ﬁ CollsionType IC-:LLIEEUTA):OII.'EI]I
% 1000000
(=1, 000000, =1 000000, =1, 00000)
Hare
. {4 - 60.000000, ¥ = 336 000000,2 =256 000000
| Mr\Blsa:otMlﬁB—.nrr\ecmn 0.0
m-umf-omx-umj
Wllmwﬁwb

i | Persstont Livel CollapteCamgeresExamp 0 [oo [foooa [ioooo (oo Weis v =|AS 5% @

FIGURE 3.15 - The effects of the CollapseCategories specifier.

DONTCOLLAPSECATEGORIES

The DontCollapseCategories specifier reverses a CollapseCategories specifier
from a parent class. This means this keyword can be used to force the editable
variables of this class to be displayed using the categories in which they were
specified to be located.

WITHIN CLASSNAME

The Within specifier designates that instances of this class can only be created
within an instance of the ClassName class, meaning that an object of type
ClassName must be assigned as the new instance’s Outer property at the time of
creation. An example of this might be a MaterialExpression. It would have no
reason to exist outside of a Material so that class is declared using the Within
specifier and the Material ClassName making it impossible for a
MaterialExpression to be created anywhere but within a Material.

INHERITS(CLASSNAME[,CLASSNAME,...])

The Inherits specifier allows a class to extend, or inherit, from multiple parent
classes. This specifier is only applicable to native classes. When specifying
multiple classes to inherit from, this can be done in a single Inherits statement or
a separate Inherits statement can be used for each class to inherit from.

IMPLEMENTS(CLASSNAME[,CLASSNAME,...])

The Implements specifier allows a class use, or implement, one or more
Interfaces. Interfaces and how to use them will be discussed in a subsequent
chapter. When specifying multiple Interfaces to implement, this can be done in a
single Implements statement or a separate Implements statement can be used
for each Interface to implement.

NOEXPORT

The NoExport specifier causes the native declaration for this class to be excluded
from the automatically generated C++ header file. When using this specifier, the
native class declaration must be created manually in a separate header file. This
specifier is only applicable to native classes.

3.5 SUMMARY

Classes are the basis for everything we do I UnrealScript. Without them, the
interesting and rich gameplay found in Unreal Tournament 3 would simply not be
possible. Although the classes you have created in this chapter were not overtly
useful, now that you know how to declare your own new classes, we can begin to
focus on implementing functionality that will make that interesting and rich
gameplay possible. That will be our goal over the course of the remainder of this
book; to use UnrealScript to create new and fun situations within the Unreal
universe.

Supplemental Files

DM-TestRoom.ut3: Test Map

